ORACLE

Oracle® Big Data Connectors
User's Guide

Release 2 (2.3)

E49333-02

November 2013

Describes installation and use of Oracle Big Data Connectors:
Oracle SQL Connector for Hadoop Distributed File System,
Oracle Loader for Hadoop, Oracle Data Integrator
Application Adapter for Hadoop, Oracle XQuery for
Hadoop, and Oracle R Advanced Analytics for Hadoop.

Oracle Big Data Connectors User's Guide, Release 2 (2.3)
E49333-02
Copyright © 2011, 2013, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users
are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and
adaptation of the programs, including any operating system, integrated software, any programs installed on
the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to
the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your
access to or use of third-party content, products, or services.

Cloudera, Cloudera CDH, and Cloudera Manager are registered and unregistered trademarks of Cloudera,
Inc.

Contents

PIrEIACEoo et xi
ATUQIEIICE ...ttt ettt b bbbttt ettt eb bbbt s bbbt b e bbbt senbenen Xi
Documentation AcCeSSIDILItYcccciiuiiiiiiiiiiiiiic s Xi
Related DOCUINENESc.cuiuiiiiiiiieiiieicieeeec et Xi
TexXt CONVENEIONS. ..o s Xii
Syntax CONVENLIONSceviuiiiiiiiiiiic s ens e Xii

Changes in This Release for Oracle Big Data Connectors User's Guide xiii
Changes in Oracle Big Data Connectors Release 2 (2.3)c..ccoovrerniieiinincieinicceececee xiii
Changes in Oracle Big Data Connectors Release 2 (2.2)ccccociiiiuiiiciecieeeeeeeeneeeneenenenenas Xiv
Changes in Oracle Big Data Connectors Release 2 (2.0)ccooorueiniiiiiiiiniicicccecce Xiv

1 Getting Started with Oracle Big Data Connectors

About Oracle Big Data CONNECtOrS..............ccovviiiiiiiiiiiiiiiii s 1-1
Big Data Concepts and Technologies................ccccccooiiiiiiiiiiiiis 1-2
What is MapRedUCE? ..o 1-2
What is Apache HadOoOPp?cooiiiiiii 1-3
Downloading the Oracle Big Data Connectors Software..............cccccovvivnninnnnnnnne, 1-3
Oracle SQL Connector for Hadoop Distributed File System Setup.............ccccccceniiiiniinns 1-4
Software ReqQUITEMENLSc.ocuruiiiiiiicc e 1-4
Installing and Configuring a Hadoop Client on the Oracle Database System.......................... 1-5
Installing Oracle SQL Connector for HDFES ... 1-6
Providing Support for Hive Tablesccoooiiiiic 1-8
Granting User Privileges in Oracle Database...........ccccoovoviieiiinininiccccceccc 1-10
Setting Up User Accounts on the Oracle Database Systemcooooiiiiiniiiic, 1-11
Using Oracle SQL Connector for HDFS on a Secure Hadoop Clustercccoceueiinunnnnee. 1-11
Oracle Loader for HAadoop Setup............ccociiuiiiiiiiiiiiiiiiiicciccicceceeeeese e 1-12
Software REQUITEIMENTSccovuiviiiiiiiiiiiiciic s 1-12
Installing Oracle Loader for HAadOOopcccouoeruiiiiiiiiiiic 1-12
Providing Support for Offline Database Modecccccooiiiiiiininiiiiiecc, 1-13
Using Oracle Loader for Hadoop on a Secure Hadoop Cluster............ccccocevvivnninninininninne 1-14
Oracle Data Integrator Application Adapter for Hadoop Setup...........cccoceviiiiiiiiiinnn, 1-14
System Requirements and Certifications.............cooceueiveciiiiiiiicce e, 1-14
Technology-Specific ReqUITemMentsccoooiueieiiiiiiiiiicce 1-15
Location of Oracle Data Integrator Application Adapter for Hadoop........cccccoeueirruernnnncnen. 1-15

Setting Up the TOPOLOZYcvvvviviiiiiiiiciiiiiiiciccccc s 1-15

Oracle XQuery for Hadoop Setup ... 1-15
Software REGUITEIMENTSccccouiuiuiuiiiiiiicicieieiciceeieteeie et eeeees 1-15
Installing Oracle XQuery for Hadoopcccceuiurieiiiiiicieicc e 1-15
Troubleshooting the File Paths..........c.ccooooiiiiii 1-16

Oracle R Advanced Analytics for Hadoop Setup...........ccocoeiiiiiiiiinniiiic 1-17
Installing the Software on HadOoop.......cccocueueiiiiiiiiiiicc e 1-17
Installing Additional R Packages...........c.ooomeiiiiiiiiiiicc 1-20
Providing Remote Client Access to R USers.........ccccceuiucuiiiniiiiiiiirccncercreceereeeeeeeeeeseeeeas 1-22

Oracle SQL Connector for Hadoop Distributed File System

About Oracle SQL Connector for HDES ...ttt ae e 2-1
Getting Started With Oracle SQL Connector for HDFES ... 2-2
Configuring Your System for Oracle SQL Connector for HDFS...............cccccooviininniinnn 2-5
Using the ExternalTable Command-Line Tool..............cccccccocoviiiiniics 2-6
About ExternalTable...........ccccoooiiiiiiiiiiic s 2-6
ExternalTable Command-Line Tool SYNtax ..o 2-6
Creating External Tables............ccccocoooiiniiiiiiiiiiii e 2-8
Creating External Tables with the ExternalTable ToOL...........c.ccccoireiiiiiiiiice, 2-8
Creating External Tables from Data Pump Format Filesc.cccoooiiiiiiiiiiiic 2-8
Creating External Tables from Hive Tablesccccccovviiiiiiiiiiicreceeeeeeeeeees 2-10
Creating External Tables from Delimited Text Files..........cccccoooiiiiiiii, 2-13
Creating External Tables in SQL..........cccooiiiiiiiiic e 2-16
Publishing the HDFS Data Paths............cccccccoiiiiiii 2-16
Listing Location File Metadata and Contents...............cccoociiiiiiiiininiiiinice 2-17
Describing External Tables ... 2-18
More About External Tables Generated by the ExternalTable Tool...................ccccoiiinnnn. 2-18
About Configurable Column Mappings.........cccceuirurieiiiiiieiciiciciec e 2-18
What Are Location FIles? ... 2-20
Enabling Parallel PrOCESSINGccccovuiuririririiiiiriiicicereeeree e 2-20
Location File Managementcccoiiiiiiiicioiiiic i 2-20
Location File INAIMESc.ccciiiiiciiiiectreccc ettt 2-21
Configuring Oracle SQL Connector for HDFSccccocoiiiiniic 2-21
Creating a Configuration File ... 2-21
Oracle SQL Connector for HDFS Configuration Property Referencecccococvvevicnnnnnen. 2-22
Performance Tips for Querying Datain HDFS..................ccccocooiii 2-31

3 Oracle Loader for Hadoop

What Is Oracle Loader for HAadoop?ccooiiiiiiiiiiieieeceeceecreeeseeesreeree e 3-1
About the Modes of Operation..............cccccccviiiiiiiiiiiiiiii e 3-2
Online Database MOdec.ccoviiiiviniiiiiiiiccireee ettt 3-2
Offline Database Mode...........ccocviiiiimiiiiiiiiii s 3-3
Getting Started With Oracle Loader for Hadoopcccoviiiiiiiiiiiiiiiiiiiicccce 3-3
Creating the Target Table ... 3-5
Supported Data Types for Target Tables..........cccccccciiiiiiiiiiiiccccereeecee e 3-5
Supported Partitioning Strategies for Target Tables............ccoooooiiiiiiiiiii, 3-5
Creating a Job Configuration File ... 3-6

About the Target Table Metadatacccoiuiiiiiiiiiiiiii s
Providing the Connection Details for Online Database Mode...........cccccoovninnnninnninniniinen.
Generating the Target Table Metadata for Offline Database Modeccccccccoeviriinnnnnnns

ADOout INPUE FOIMALSoovouiiiiiiiiiciniciiccetcecece ettt ettt eb e
Delimited Text Input FOrmat.........ccooviiiiiiiii
Complex Text INput FOrMats........ccocciiiiiiiiiiicccceececeeeee e
Hive Table Input FOrmat........ccciiiiiiiiiiiiiic s
AvVro Input FOrmat ...
Oracle NoSQL Database Input FOrmatcccccceuiiriiiiinniiiinrrecreerceeecsceeces e
Custom INput FOIMAatsooiuiiiiiiiiiiiiiii s

Mapping Input Fields to Target Table Columnscccccocoviviiiiniiniin
AUtomatic MappPing.......cccociiiiiiiiiiii s
Manual Mapping ..o s
Converting a Loader Map Fileccoooiiiii

ADbout Output FOIMALSc.cooeiiiiiiiiieiiceee ettt
JDBC Output FOrmatcoovviiiiiiiiiiiiiiiicccccc
Oracle OCI Direct Path Output Formatcooooiie,
Delimited Text Output FOrmMat ...
Oracle Data Pump Output Format ..o

Running a Loader JOD ...
Specifying Hive Input Format JAR Filesccccoceiiiiiiiiiiicrccceceeeeeeeeeees
Specifying Oracle NoSQL Database Input Format JAR Filesccccooovviiiiiiiii,
JOD REPOTHING ..ottt

Handling Rejected Records............ccoiiiiiiiiiiiiiiiii s
Logging Rejected Records in Bad Files ...,
Setting a Job Reject LMtc.coiuiuiiiiiiei

Balancing Loads When Loading Data into Partitioned Tables................cccccoeovnniinnnnn
Using the Sampling Featurecoooiiiiiiiiiiii
Tuning Load BalanCing ..o
Tuning Sampling BENaviorc.cccciiiiiiiiiiiccceccee s
When Does Oracle Loader for Hadoop Use the Sampler's Partitioning Scheme?
Resolving MemOTry ISSUESc.cccuiiiiiiiiiiiiiiiiiicic s
What Happens When a Sampling Feature Property Has an Invalid Value?

Optimizing Communications Between Oracle Engineered Systemsccccccocevviiiinnnns

Oracle Loader for Hadoop Configuration Property Reference.................cccccccoeciiiiiiiinnnn,

Third-Party Licenses for Bundled Software ...,
Apache Licensed Code ...
APAChE AVIO 1.7.3 oo s
Apache Commons Mathematics Library 2.2........cccccccevciiiiiiiiiieeeceeecceeeeeenenenenens
JACKSON JSOIN TL8.8 ..ttt sttt et ettt ettt s st et ae

4 Oracle Data Integrator Application Adapter for Hadoop

INtrOAUCHON ... s
CONCEPES ...t
Knowledge Modules..........cccooiiiiiiicceeeceeee e
SOCUIILY 1ottt

Setting Up the TOPOLoZYcoiiiiiiiiiiii e

3-25

Setting Up File Data SOUICESccovuiiiiimiiiiiiiiiicicc e 4-3

Setting Up Hive Data SOUICEScoeuiiiiiiiiiiieiiit e 4-3
Setting Up the Oracle Data Integrator Agent to Execute Hadoop Jobsccccccccceciiiicennes 4-5
Configuring Oracle Data Integrator Studio for Executing Hadoop Jobs on the Local Agent 4-6
Setting Up an Integration Project...............ccoooiiiiiiiiic 4-6
Creating an Oracle Data Integrator Model from a Reverse-Engineered Hive Model 4-7
Creating @ Model........o.oviiii 4-7
Reverse Engineering Hive Tables ..o 4-7
Designing the Interface.............ccccocoooiiiiiiii 4-8
Loading Data from Files into Hive ..o, 4-8
Validating and Transforming Data Within Hiveccccocooiiiiie, 4-9
Loading Data into an Oracle Database from Hive and HDFS.............c.ccccoovviiinninnnnne 4-10

5 Using Oracle XQuery for Hadoop

vi

What Is Oracle XQuery for Hadoop? ..o 5-1
Getting Started With Oracle XQuery for Hadoop ..o 5-2
BaSic StEPS ...vviiietict s 5-2
Example: Hello World!......c.cooiiiiiiiccececcee e 5-3
ADbout the Adapters..........ccciiiiiiiiii 5-3
About the Oracle XQuery for Hadoop FUNCHONS ..ot 5-4
About the AVIo File Adapter........ccociiiiiiiiicicceccceeee e 5-4
About the Oracle Database Adapter ..., 5-4
About the Oracle NoSQL Database Adapter.......ccccooiieiiiiiiiiiiiiccccc e, 5-4
About the Sequence File Adapter..........cccccciiiiiiiiiiiiiicceceeeeee e 5-5
About the Text File Adapter ... 5-5
About the XML File Adapter........c.ccooiiiiiiiiiiiiiiiii s 5-5
About Other Modules for Use With Oracle XQuery for Hadoop.......ccccccceueueuriiccnnneicnnnns 5-5
Creating an XQuery Transformation...........ccccoviiiiiiiiiii s 5-6
XQuery Transformation RequUirementsc.cooeruiiiiiioiiiicciecc 5-6
About XQuery Language SUPPOTt.......ccceviviiiiiiiiiiiiii s 5-7
Accessing Data in the Hadoop Distributed Cache...........ooooeiiiiiiiiie, 5-7
Calling Custom Java Functions from XQUETYcccooveieiniiiiiniiccceec e, 5-7
Accessing User-Defined XQuery Library Modules and XML Schemascccccecevurevvrererenence. 5-8
XQuery Transformation EXamples...........coooeiiiiiiiiiiiiiic e 5-8
RUNNING @ QUETY ...ttt 5-13
Oracle XQuery for Hadoop OPtioNSccccccieiiiuiiieicieciceeeeeeree et neneneneenenens 5-13
GeNETiC OPLIONS....cuoviiiiiiiiiciec s 5-13
About Running Queries Locally ..o 5-14
Oracle XQuery for Hadoop Configuration Properties.............ccccccooovinniiinniiniiiiii, 5-14
Third-Party Licenses for Bundled Softwarecccccooiiiiiiiiiii 5-16
Apache Licensed Code ... 5-16
ANTLR 3.2 5-16
APAChe ANt 1.7.1 s 5-17
Apache AVIo 1.7.3, 1.7.4cccciiiiiiiiiii s 5-18
APACRE XEICES......vviviiiiieieieieicte ettt 5-21
Apache XMLBEANS 2.5.......ccccoviiiiiiiiiiiiiiciciiieiccee s 5-21
JACKSOMN 1.8.8 ..ttt sttt ettt ettt ese et e e s e eb e sb et ess e b ensensenseneeseeseeseeseesesenee 5-22

WOOASEOX XIMIL PATSEOT 4.2......eeiiieeie ettt eaee e s et eeaae s savaessnaaessanesesnseeeenseesnnnnes 5-22

6 Oracle XQuery for Hadoop Reference

AVIO File AdAPLer.... ..o 6-2
Built-in Functions for Reading Avro Files.........ccccooiiiiiiiiiicc 6-3
Custom Functions for Reading Avro Container Files..........cccocovivnnnnnnnnnnnnnceccee. 6-5
Custom Functions for Writing Avro FAles ..o 6-7
About Converting Values Between Avro and XML ..., 6-10

Oracle Database AdQPler.........c.cccoooiiiriiriiiiiireeere et 6-19
Custom Functions for Writing to Oracle Databasecccoooiiiiiiiiiiiii 6-20

%oracle-property Annotations and Corresponding Oracle Loader for Hadoop Configuration
Properties 6-26

Oracle NoSQL Database Adapterc.occcooeoirieiriiiniiinieneneetceeereeeseeesee e 6-29
Prerequisites for Using the Oracle NoSQL Database Adapter..........ccccoevviiiininiinninnnnnn, 6-30
Built-in Functions for Reading from and Writing to Oracle NoSQL Database 6-31
Custom Functions for Reading Values from Oracle NoSQL Database...........cccccecvvuvuverennee. 6-38
Custom Functions for Retrieving Single Values from Oracle NoSQL Database................... 6-41
Custom Functions for Writing to Oracle NoSQL Database.............ccccocouvioirieiiiiiicciiica, 6-43
Oracle NoSQL Database Adapter Configuration Properties............cccocoevvvveinvnvnnnnene. 6-44

Sequence File Adapter...........coooiiiiiiiiiiii e 6-47
Built-in Functions for Reading and Writing Sequence Files.............cccoooiiiin, 6-48
Custom Functions for Reading Sequence Files..........cccccccocveiiiiiiniinncrceerreecne 6-54
Custom Functions for Writing Sequence Files...........c.coooiiiiiiic 6-56

Text File Adapler ... 6-58
Built-in Functions for Reading and Writing Text Files.........cccccccccoeviiiiiinnninnnirncenes 6-59
Custom Functions for Reading Text Files..........c.ooociiiiiiiiiiiiicc 6-63
Custom Functions for Writing Text Files.........c.cccooiiiiiiicc 6-65

XML File AdQPLETooviiiieiiieiiicirecerertcte ettt ettt 6-68
Built-in Functions for Reading XML Files.........ccoviiiiiiiiiiiiicic 6-69
Custom Functions for Reading XML Filescccoooiiiiiiiiiiiccc 6-72

JSON MOAUIE........ooiieiiiiieieeeee ettt et et e e et et e sseessesasesseessessasnseseessensaessesseensesseensesssensensenn 6-75
Built-in Functions for Reading JSONcccccooiiiiiiiiii s 6-76

ULty MOAULE ... s 6-79
Duration, Date, and Timme FUNCHONSocviviiiiieeicceee ettt 6-80
SHING FUNCHONS. ...ttt 6-84

Hadoop Module...........ccooiiiiiiiiiiiii s 6-86

Serialization ANNOAtiONS.............coiiiiiii e 6-87

7 Oracle XML Extensions for Hive

What are the XML Extensions for Apache Hive?ccccooiiiniiniiniincineneneneeereeereeeneneas 7-1
Using the Hive EXtensions............ccccccoiiiiiiiiiiiiic e 7-2
Creating XML Tables...........cccoooiiiiiiiiiicc s 7-2
Hive CREATE TABLE Syntax for XML Tables..........cccccccoeiiiiiiiiicceeeiccicneeeneeeeeenes 7-3
CREATE TABLE EXamMPIES.......ccoceiviiiiiiiiiiiiiiciiciccccc e 7-5
XML Function Library for Apache Hive............cccocoiiiiiiiiiiiiicncccs 7-10
Online Documentation of FUNCHONSc.ccccceiiiiiiiiiicccccceeeeeeeeeeeeeeeeeeeeees 7-11

Vii

About Hive Access 10 EXtOrNal FIlEScc.voiouviiiiiiiiiiieeee e 7-12

About Data Type CONVEISIONS........cccoiuiviiiiiiiiiiiiiiiieiei s 7-13
XINL_QUETY ..o s 7-14
XMI_QUETY_AS_PIIMILITEcocooviiiiiiiiicicicic s 7-16
pa 11 B e 11 - ST SRRRORRRRRN 7-19
b4 s 11 I 7 1 o) LSRR PR 7-21

8 Using Oracle R Advanced Analytics for Hadoop

About Oracle R Advanced Analytics for Hadoop..........cccccovviiiiiiiiiiniie 8-1
Access t0 HDES Filesccooooiiiiiiiiiiiiic 8-2
Access to Apache HiVe ... 8-3
ORE Functions for HIVecccooiiiiiiiiiiiiiic s 8-3
Generic R Functions Supported in HiVe.........ooiiiiiiiicas 8-4
Support for Hive Data TYPeSccoviriieiicici e 8-5
Usage NOtes fOr HIVE ACCESS.......cuouriiiiiriiiiiiecc ettt 8-7
Example: Loading Hive Tables into Oracle R Advanced Analytics for Hadoop 8-7
Access to Oracle Database ..o 8-8
Usage Notes for Oracle Database ACCESScccuiriimiiuiiimimciiiieeeieeeeeeieiene e eaeseneneaenenenes 8-8
Scenario for Using Oracle R Advanced Analytics for Hadoop with Oracle R Enterprise 8-8
Analytic Functions in Oracle R Advanced Analytics for Hadoop.........c.ccccovvvininniinnnne, 8-9
ORCH mapred.config Classccccoviiiiiiiiiiiiii s 8-10
Examples and Demos of Oracle R Advanced Analytics for Hadoopcccccovvriiiiiiiinnnns 8-11
Using the DemOScuviiii 8-11
USINg the EXAMPLES ...t ees 8-19
Security Notes for Oracle R Advanced Analytics for Hadoop ..., 8-30

9 ORCH Library Reference

viii

Functions in Alphabetical Order.............ccccoviiiiiiiiininiiiii 9-1
Functions by Categoryccccoviiiiiiiiiiiiiiiiiiii s 9-2
Making CONNECHIONSc.ccuiuiiiiiiiieiecce ettt 9-3
COPYING Data ..o 9-3
EXPLOTING FLES ... 9-3
Writing MapReduce FUNCHONS ..o 9-3
DebUgging SCIIPEScucviieiicieiieecie 9-3
UsiNg Hive Data ..o 9-4
Writing Analytical FUNCHONSc.coiiiiiiii e 9-4
RAOOP.EXEC ... 9-5
RAdOOP.TUN.......coiiiiiii s 9-8
hdfs.attachi...........ooooi s 9-11
RALS.CA oo s 9-13
RUALS.CP oo 9-14
RAfS.deSCIIDE ... s 9-15
Rdfs.dOWNIOAdcooviiiiiii s 9-16
RALS.EXISES ..ottt 9-17
RALS.GOL ..o s 9-18
RAfSNEAd ... 9-19
RALS A ..o s 9-20

s B LN SRR 9-21

RAESIMKAIT ...ttt ettt ettt bbbt 9-22
RAESINV ..ottt 9-23
RALS. PATES. ..o s 9-24
RALS.PULL ... 9-25
RAES.PUSIL. ...ttt 9-27
RALS.PUL oo s 9-29
RALS.PWA ..o 9-30
AESTIN. ..ottt 9-31
RAESIINAIT ..ottt ettt bbbt 9-32
RALS.TOOT ... 9-33
RALS.SAIMIPLE......oeiiiiic et 9-34
RALS.SEEIOOL ...ttt 9-35
RAES.SIZE.....c.eee ettt b ettt 9-36
RALS AT ... 9-37
RAfS.UPLoad.... ..o 9-38
ISALS A ..ottt b et 9-40
OFCRLCOMMECE ..ottt st saenen 9-41
OFCR.CONMECERA ...ttt ettt st sae e 9-44
OFCRLADCOMN. ... 9-45
OTCh.ADGJASEEIT ... 9-47
OFCh.AbG.Off ... 9-48
OFCHLADGOM ... 9-49
Orch.db@.outpul......c.coooiii 9-50
OFCRL.ADINTO ..ottt ettt st 9-51
OFCRLAISCOMMECE ..o 9-52
OTCRLATYTUN ..o s 9-54
OTCRLEXPOTL ..ot s 9-55
OFChLKEY VL. 9-56
OTCRLKEYVALS ...t 9-57
OFCRLPACK ..ottt 9-59
OFCRLIECOMIECE ..ottt ettt b ettt b bbbt sa et st et ebeneas 9-60
OTCh.temMP.Path ... 9-61
OFCRLUNPACK ..o s 9-62
OFCRLVEISION ..ottt ettt b et b ettt b bbb ebesae st s e e st stenea 9-63
Index

Audience

Preface

The Oracle Big Data Connectors User’s Guide describes how to install and use Oracle Big
Data Connectors:

= Oracle Loader for Hadoop

= Oracle SQL Connector for Hadoop Distributed File System
s Oracle XQuery for Hadoop

» Oracle Data Integrator Application Adapter for Hadoop

s Oracle R Advanced Analytics for Hadoop

This document is intended for users of Oracle Big Data Connectors, including the
following:

= Application developers
= Java programmers

s XQuery programmers
= System administrators

s Database administrators

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers have access to electronic support through My Oracle Support. For
information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or
visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing
impaired.

Related Documents

For more information, see the following documents:
» Oracle Loader for Hadoop Java API Reference
» Oracle Fusion Middleware Application Adapters Guide for Oracle Data Integrator

xi

» Oracle Big Data Appliance Software User's Guide.

Text Conventions

The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Syntax Conventions

The syntax in Chapter 2 is presented in a simple variation of Backus-Naur Form (BNF)
that uses the following symbols and conventions:

Symbol or Convention Description

[] Brackets enclose optional items.
{} Braces enclose a choice of items, only one of which is required.
| A vertical bar separates alternatives within brackets or braces.

Ellipses indicate that the preceding syntactic element can be
repeated.

delimiters Delimiters other than brackets, braces, and vertical bars must be
entered as shown.

Xii

Changes in This Release for Oracle Big Data

Connectors User's Guide

This preface lists changes in the Oracle Big Data Connectors User’s Guide.

Changes in Oracle Big Data Connectors Release 2 (2.3)

The following are changes in Oracle Big Data Connectors User’s Guide for Oracle Big
Data Connectors Release 2 (2.3).

The name Oracle R Connector for Hadoop changed to Oracle R Advanced Analytics
for Hadoop.

New Features
The following features are new in this release.

Oracle XQuery for Hadoop

Oracle XQuery for Hadoop is a transformation engine for semi-structured data
stored in Apache Hadoop. It runs transformations expressed in the XQuery
language by translating them into a series of MapReduce jobs, which are executed
in parallel on the Hadoop cluster.

See Part III, "Oracle XQuery for Hadoop"
Oracle SQL Connector for HDFS

= You can now override the default data type mappings by setting various
configuration properties.

See "About Configurable Column Mappings" on page 2-18.

s Oracle SQL Connector for HDFS supports extended data types (VARCHAR2,
NVARCHAR, and CLOB for Apache Hive and text data sources.

See "oracle.hadoop.exttab.colMap.columnLength" on page 2-22. and
"oracle.hadoop.exttab.colMap.columnType" on page 2-23.

s The --output option to the hadoop command can write the generated DDL to
a file.

See "Using the ExternalTable Command-Line Tool" on page 2-6.
Oracle Loader for Hadoop

Configuration parameters replace loader maps. A utility is provided to convert a
loader map file into a configuration file.

See "Converting a Loader Map File" on page 3-15.

xiii

Other Changes

The following are additional changes in the release:
= Oracle R Advanced Analytics for Hadoop
Two additional, dependent ORE packages must be installed on client nodes.

See "Oracle R Advanced Analytics for Hadoop Setup" on page 1-17.

Changes in Oracle Big Data Connectors Release 2 (2.2)

The following are changes in Oracle Big Data Connectors User’s Guide for Oracle Big
Data Connectors Release 2 (2.2).

New Features
The following features are new in this release.

s Oracle SQL Connector for Hadoop Distributed File System
Supports the Apache Hive decimal data type.

» Oracle Loader for Hadoop
Supports Hive 0.10.0.

Deprecated Features

The following features are deprecated in this release, and may be desupported in a
future release

= Oracle Loader for Hadoop
— oracle.hadoop.loader.libjars

— oracle.hadoop.loader.sharedlibs

Other Changes

The following are additional changes in the release:
= Oracle Loader for Hadoop

The file names of the two kits in the installation zip archive have changed to the
following format:

— oraloader-version-h1.x86_64.zip for CDH4
— oraloader-version-h2.x86_64.zip for Apache Hadoop 0.20.2 and CDH3

Changes in Oracle Big Data Connectors Release 2 (2.0)

Xiv

The following are changes in Oracle Big Data Connectors User’s Guide for Oracle Big
Data Connectors Release 2 (2.0).

New Features

Oracle Big Data Connectors support Cloudera's Distribution including Apache
Hadoop version 4 (CDH4). For other supported platforms, see the individual
connectors in Chapter 1.

The name of Oracle Direct Connector for Hadoop Distributed File System changed to
Oracle SQL Connector for Hadoop Distributed File System.

= Oracle SQL Connector for Hadoop Distributed File System

— Automatic creation of Oracle Database external tables from Hive tables, Data
Pump files, or delimited text files.

- Management of location files.

See Chapter 2.

Oracle Loader for Hadoop

— Support for Sockets Direct Protocol (SDP) for direct path loads
- Support for secondary sort on user-specified columns

- New input formats for regular expressions and Oracle NoSQL Database. The
Avro record InputFormat is supported code instead of sample code.

- Simplified date format specification

- New reject limit threshold

— Improved job reporting and diagnostics
See Chapter 3.

Oracle R Advanced Analytics for Hadoop

Several analytic algorithms are now available: linear regression, neural networks
for prediction, matrix completion using low rank matrix factorization, clustering,
and nonnegative matrix factorization.

Oracle R Advanced Analytics for Hadoop supports Hive data sources in addition
to HDFS files.

Oracle R Advanced Analytics for Hadoop can move data between HDFS and
Oracle Database. Oracle R Enterprise is not required for this basic transfer of data.

The following functions are new in this release:

as.ore.*

hadoop. jobs
hdfs.head
hdfs.tail
is.ore.*
orch.connected
orch.dbg.lasterr
orch.evaluate
orch.export.fit
orch.1lm

orch.lmf
orch.neural
orch.nmf
orch.nmf .NMFalgo
orch.temp.path
ore.*
predict.orch.lm
print.summary.orch.lm
summary.orch.lm

See Chapter 8.

Deprecated Features

The following features are deprecated in this release, and may be desupported in a
future release:

Oracle SQL Connector for Hadoop Distributed File System

XV

XVi

Location file format (version 1): Existing external tables with content
published using Oracle Direct Connector for HDFS version 1 must be
republished using Oracle SQL Connector for HDFS version 2, because of
incompatible changes to the location file format.

When Oracle SQL Connector for HDFS creates new location files, it does not
delete the old location files.

See Chapter 2.

oracle.hadoop.hdfs.exttab namespace (version 1): Oracle SQL Connector
for HDFS uses the following new namespaces for all configuration properties:

* oracle.hadoop.connection: Oracle Database connection and wallet
properties

* oracle.hadoop.exttab: All other properties
See Chapter 2.

HDEFS_BIN_PATH directory: The preprocessor directory name is now OSCH_
BIN_PATH.

See "Oracle SQL Connector for Hadoop Distributed File System Setup” on
page 1-4.

Oracle R Advanced Analytics for Hadoop

keyval: Use orch.keyval to generate key-value pairs.

orch.reconnect: Use orch. connect to reconnect using a connection object
returned by orch. dbcon.

Desupported Features
The following features are no longer supported by Oracle.

Oracle Loader for Hadoop

oracle.hadoop.loader.configuredCounters

See Chapter 3.

Other Changes

The following are additional changes in the release:

Oracle Loader for Hadoop

The installation zip archive now contains two kits:

oraloader-2.0.0-1.x86_64.zip for Apache Hadoop 0.20.2 and CDH3
oraloader-2.0.0-2.x86_64.zip for CDH4

See "Oracle Loader for Hadoop Setup" on page 1-12.

Part |

Setup

Part I contains the following chapter:

» Chapter 1, "Getting Started with Oracle Big Data Connectors"

1

Getting Started with Oracle Big Data
Connectors

This chapter describes the Oracle Big Data Connectors and provides installation
instructions.

This chapter contains the following sections:

About Oracle Big Data Connectors

Big Data Concepts and Technologies

Downloading the Oracle Big Data Connectors Software

Oracle SQL Connector for Hadoop Distributed File System Setup
Oracle Loader for Hadoop Setup

Oracle Data Integrator Application Adapter for Hadoop Setup
Oracle XQuery for Hadoop Setup

Oracle R Advanced Analytics for Hadoop Setup

About Oracle Big Data Connectors

Oracle Big Data Connectors facilitate data access to data stored in an Apache Hadoop
cluster. It can be licensed for use on either Oracle Big Data Appliance or a Hadoop
cluster running on commodity hardware.

These are the connectors:

Oracle SQL Connector for Hadoop Distributed File System (previously Oracle
Direct Connector for HDFS): Enables an Oracle external table to access data
stored in Hadoop Distributed File System (HDFS) files or a table in Apache Hive.
The data can remain in HDFS or the Hive table, or it can be loaded into an Oracle
database. Oracle SQL Connector for HDFS is a command-line utility that accepts
generic command line arguments supported by the org.apache.hadoop.util.Tool
interface. It also provides a preprocessor for Oracle external tables.

Oracle Loader for Hadoop: Provides an efficient and high-performance loader for
fast movement of data from a Hadoop cluster into a table in an Oracle database.
Oracle Loader for Hadoop prepartitions the data if necessary and transforms it
into a database-ready format. It optionally sorts records by primary key or
user-defined columns before loading the data or creating output files. Oracle
Loader for Hadoop is a MapReduce application that is invoked as a command-line
utility. It accepts the generic command-line options that are supported by the
org.apache.hadoop.util. Tool interface.

Getting Started with Oracle Big Data Connectors 1-1

Big Data Concepts and Technologies

= Oracle Data Integrator Application Adapter for Hadoop: Extracts, transforms,
and loads data from a Hadoop cluster into tables in an Oracle database, as defined
using a graphical user interface.

s Oracle XQuery for Hadoop: Runs transformations expressed in the XQuery
language by translating them into a series of MapReduce jobs, which are executed
in parallel on the Hadoop cluster. The input data can be located in a file system
accessible through the Hadoop File System API, such as the Hadoop Distributed
File System (HDEFS), or stored in Oracle NoSQL Database. Oracle XQuery for
Hadoop can write the transformation results to HDFS, Oracle NoSQL Database, or
Oracle Database.

= Oracle R Advanced Analytics for Hadoop: Provides an interface between a local
R environment, Oracle Database, and Hadoop, allowing speed-of-thought,
interactive analysis on all three platforms. Oracle R Advanced Analytics for
Hadoop is designed to work independently, but if the enterprise data for your
analysis is also stored in Oracle Database, then the full power of this connector is
achieved when it is used with Oracle R Enterprise.

Individual connectors may require that software components be installed in Oracle
Database and either the Hadoop cluster or an external system set up as a Hadoop
client for the cluster. Users may also need additional access privileges in Oracle
Database.

See Also: My Oracle Support Information Center: Big Data
Connectors (ID 1487399.2) and its related information centers.

Big Data Concepts and Technologies

Enterprises are seeing large amounts of data coming from multiple sources.
Click-stream data in web logs, GPS tracking information, data from retail operations,
sensor data, and multimedia streams are just a few examples of vast amounts of data
that can be of tremendous value to an enterprise if analyzed. The unstructured and
semi-structured information provided by raw data feeds is of little value in and of
itself. The data must be processed to extract information of real value, which can then
be stored and managed in the database. Analytics of this data along with the
structured data in the database can provide new insights into the data and lead to
substantial business benefits.

What is MapReduce?

MapReduce is a parallel programming model for processing data on a distributed
system. It can process vast amounts of data in a timely manner and can scale linearly.
It is particularly effective as a mechanism for batch processing of unstructured and
semi-structured data. MapReduce abstracts lower level operations into computations
over a set of keys and values.

A simplified definition of a MapReduce job is the successive alternation of two phases,
the map phase and the reduce phase. Each map phase applies a transform function
over each record in the input data to produce a set of records expressed as key-value
pairs. The output from the map phase is input to the reduce phase. In the reduce
phase, the map output records are sorted into key-value sets so that all records in a set
have the same key value. A reducer function is applied to all the records in a set and a
set of output records are produced as key-value pairs. The map phase is logically run
in parallel over each record while the reduce phase is run in parallel over all key
values.

1-2 Oracle Big Data Connectors User's Guide

Downloading the Oracle Big Data Connectors Software

Note: Oracle Big Data Connectors do not support the Yet Another
Resource Negotiator (YARN) implementation of MapReduce.

What is Apache Hadoop?

Apache Hadoop is the software framework for the development and deployment of
data processing jobs based on the MapReduce programming model. At the core,
Hadoop provides a reliable shared storage and analysis system'. Analysis is provided
by MapReduce. Storage is provided by the Hadoop Distributed File System (HDFS), a
shared storage system designed for MapReduce jobs.

The Hadoop ecosystem includes several other projects including Apache Avro, a data
serialization system that is used by Oracle Loader for Hadoop.

Cloudera's Distribution including Apache Hadoop (CDH) is installed on Oracle Big
Data Appliance. You can use Oracle Big Data Connectors on a Hadoop cluster running
CDH or the equivalent Apache Hadoop components, as described in the setup
instructions in this chapter.

See Also:

= For conceptual information about the Hadoop technologies, the
following third-party publication:

Hadoop: The Definitive Guide, Third Edition by Tom White (O'Reilly
Media Inc., 2012, ISBN: 978-1449311520).

» For information about Cloudera's Distribution including Apache
Hadoop (CDH4), the Oracle Cloudera website at

http://oracle.cloudera.com/
» For information about Apache Hadoop, the website at

http://hadoop.apache.org/

Downloading the Oracle Big Data Connectors Software

You can download Oracle Big Data Connectors from Oracle Technology Network or
Oracle Software Delivery Cloud.

To download from Oracle Technology Network:
1. Use any browser to visit this website:

http://www.oracle.com/technetwork/bdc/big-data-connectors/downloads/ind
ex.html

2. Click the name of each connector to download a zip file containing the installation
files.

To download from Oracle Software Delivery Cloud:

1. Use any browser to visit this website:
https://edelivery.oracle.com/

2. Accept the Terms and Restrictions to see the Media Pack Search page.

3. Select the search terms:

v Hadoop: The Definitive Guide, Third Edition by Tom White (O'Reilly Media Inc., 2012,
978-1449311520).

Getting Started with Oracle Big Data Connectors 1-3

http://www.oracle.com/technetwork/bdc/big-data-connectors/downloads/index.html
http://www.oracle.com/technetwork/bdc/big-data-connectors/downloads/index.html

Oracle SQL Connector for Hadoop Distributed File System Setup

Select a Product Pack: Oracle Database
Platform: Linux x86-64
Click Go to display a list of product packs.

Select Oracle Big Data Connectors Media Pack for Linux x86-64 (B65965-0x), and
then click Continue.

Click Download for each connector to download a zip file containing the
installation files.

Oracle SQL Connector for Hadoop Distributed File System Setup

You install and configure Oracle SQL Connector for Hadoop Distributed File System
(HDFS) on the system where Oracle Database runs. If Hive tables are used as the data
source, then you must also install and run Oracle SQL Connector for HDFS on a
Hadoop client where users access Hive.

Oracle SQL Connector for HDFS is installed already on Oracle Big Data Appliance if it
was configured for Oracle Big Data Connectors. This installation supports users who
connect directly to Oracle Big Data Appliance to run their jobs.

This section contains the following topics:

Software Requirements

Installing and Configuring a Hadoop Client on the Oracle Database System
Installing Oracle SQL Connector for HDFS

Providing Support for Hive Tables

Granting User Privileges in Oracle Database

Setting Up User Accounts on the Oracle Database System

Using Oracle SQL Connector for HDFS on a Secure Hadoop Cluster

Software Requirements
Oracle SQL Connector for HDFS requires the following software:

On the Hadoop cluster:

Cloudera's Distribution including Apache Hadoop version 3 (CDH3) or version 4
(CDH4), Apache Hadoop 1.0 (formerly 0.20.2), or Apache Hadoop 1.1.

Java Development Kit (JDK) 1.6_08 or later. Consult the distributor of your
Hadoop software (Cloudera or Apache) for the recommended version.

Hive 0.7.0,0.7.1, 0.8.1, 0.9.0, or 0.10 (required for Hive table access, otherwise
optional)

This software is already installed on Oracle Big Data Appliance.

On the Oracle Database system and Hadoop client systems:

Oracle Database 12¢, Oracle Database 11g release 2 (11.2.0.2 or 11.2.0.3), or Oracle
Database 10g release 2 (10.2.0.5) for Linux.

To support the Oracle Data Pump file format in Oracle Database release 11.2.0.2,
an Oracle Database one-off patch. To download this patch, go to
http://support.oracle.com and search for bug 14557588.

Release 11.2.0.3 and later releases do not require this patch.

1-4 Oracle Big Data Connectors User's Guide

Oracle SQL Connector for Hadoop Distributed File System Setup

The same version of Hadoop as your Hadoop cluster: CDH3, CDH4, Apache
Hadoop 1.0, or Apache Hadoop 1.1.

If you have a secure Hadoop cluster configured with Kerberos, then the Hadoop
client on the database system must be set up to access a secure cluster. See "Using
Oracle SQL Connector for HDFS on a Secure Hadoop Cluster" on page 1-11.

The same version of JDK as your Hadoop cluster.

Installing and Configuring a Hadoop Client on the Oracle Database System

Oracle SQL Connector for HDFS works as a Hadoop client. You must install Hadoop
on the Oracle Database system and minimally configure it for Hadoop client use only.
You do not need to perform a full configuration of Hadoop on the Oracle Database
system to run MapReduce jobs for Oracle SQL Connector for HDFS.

You can optionally set up additional Hadoop client systems by following these
instructions.

To configure the Oracle Database system as a Hadoop client:

1.

Install and configure the same version of CDH or Apache Hadoop on the Oracle
Database system as on the Hadoop cluster. If you are using Oracle Big Data
Appliance, then complete the procedures for providing remote client access in the
Oracle Big Data Appliance Software User’s Guide. Otherwise, follow the installation
instructions provided by the distributor (Cloudera or Apache).

Note: Do not start Hadoop on the Oracle Database system. If it is
running, then Oracle SQL Connector for HDFS attempts to use it
instead of the Hadoop cluster. Oracle SQL Connector for HDFS just
uses the Hadoop JAR files and the configuration files from the
Hadoop cluster on the Oracle Database system.

If your cluster is secured with Kerberos, then obtain a Kerberos ticket:
> kinit

> password

Ensure that Oracle Database has access to HDFS:

a. Log in to the system where Oracle Database is running by using the Oracle
Database account.

b. Open a Bash shell and enter this command:

hadoop fs -1s /user

You might need to add the directory containing the Hadoop executable file to
the PATH environment variable. The default path for CDH is /usr/bin.

You should see the same list of directories that you see when you run the
hadoop fs command directly on the Hadoop cluster. If not, then first ensure
that the Hadoop cluster is up and running. If the problem persists, then you
must correct the Hadoop client configuration so that Oracle Database has
access to the Hadoop cluster file system.

The Oracle Database system is now ready for use as a Hadoop client. No other
Hadoop configuration steps are needed.

Getting Started with Oracle Big Data Connectors 1-5

Oracle SQL Connector for Hadoop Distributed File System Setup

Installing Oracle SQL Connector for HDFS

Follow this procedure to install Oracle SQL Connector for HDFS.

To install Oracle SQL Connector for HDFS on the Oracle Database system:

1.
2.

Download the zip file to a directory on the system where Oracle Database runs.
Unpack the content of oraosch-version.zip.

$ unzip oraosch-2.3.0.zip
Archive: oraosch-2.3.0.zip
extracting: orahdfs-2.3.0.zip
inflating: README.txt

Unpack orahdfs-version.zip into a permanent directory:

$ unzip orahdfs-2.3.0.zip
Archive: orahdfs-2.3.0.zip
creating: orahdfs-2.3.0/
creating: orahdfs-2.3.0/bin/
inflating: orahdfs-2.3.0/bin/hdfs_stream

The unzipped files have the structure shown in Example 1-1.

Open the orahdfs-2.3.0/bin/hdfs_stream Bash shell script in a text editor, and
make the changes indicated by the comments in the script, if necessary

The hdfs_stream script does not inherit any environment variable settings, and so
they are set in the script if Oracle SQL Connector for HDFS needs them:

= PATH: If the hadoop script is not in /usr/bin:bin (the path initially set in hdfs_
stream), then add the Hadoop bin directory, such as /usr/lib/hadoop /bin.

= JAVA_HOME: If Hadoop does not detect Java, then set this variable to the Java
installation directory. For example, /usr/bin/java.

= OSCH_HOME: If you moved the script from the orahdfs-version /bin subdirectory,
then set this variable to the full path of the orahdfs-2.3.0 directory, which was
created in Step 3. Otherwise, Oracle SQL Connector for HDFS detects its
location automatically.

See the comments in the script for more information about these environment
variables.

The hdfs_stream script is the preprocessor for the Oracle Database external table
created by Oracle SQL Connector for HDFS.

If your cluster is secured with Kerberos, then obtain a Kerberos ticket:

> kinit

> password

Run hdfs_stream from the Oracle SQL Connector for HDFS /bin directory. You
should see this usage information:

$./hdfs_stream

Usage: hdfs_stream locationFile

If you do not see the usage statement, then ensure that the operating system user
that Oracle Database is running under (such as oracle) has the following
permissions:

1-6 Oracle Big Data Connectors User's Guide

Oracle SQL Connector for Hadoop Distributed File System Setup

= Read and execute permissions on the hdfs_stream script:

$ 1s -1 OSCH_HOME/bin/hdfs_stream
-rwxr-xr-x 1 oracle oinstall Nov 27 15:51 hdfs_stream

= Read permission on orahdfs jar.

$ ls -1 OSCH HOME/jlib/orahdfs.jar
-rwxr-xr-x 1 oracle oinstall Nov 27 15:51 orahdfs.jar

If you do not see these permissions, then enter a chmod command to fix them, for
example:

$ chmod 755 OSCH HOME/bin/hdfs_stream

In the previous commands, 0SCH_HOME represents the Oracle SQL Connector for
HDFS home directory.

7. Login to Oracle Database and create a database directory for the
orahdfs-version /bin directory where hdfs_stream resides. In this example, Oracle
SQL Connector for HDFS is installed in /etc:

SQL> CREATE OR REPLACE DIRECTORY osch_bin_path AS '/etc/orahdfs-2.3.0/bin';

8. If you plan to access only data stored in HDFS and Data Pump format files, then
you are done. If you also plan to access Hive tables, then you must also install
Hive software on the Hadoop client, as described in "Providing Support for Hive
Tables" on page 1-8.

The unzipped files have the structure shown in Example 1-1.

Example 1-1 Structure of the orahdfs Directory

orahdfs-version
bin/
hdfs_stream
doc/
README. txt
jlib/
ojdbcé6. jar
ora-hadoop-common. jar
oraclepki.jar
orahdfs.jar
osdt_cert.jar
osdt_core.jar
log/

Figure 1-1 illustrates shows the flow of data and the components locations.

Getting Started with Oracle Big Data Connectors 1-7

Oracle SQL Connector for Hadoop Distributed File System Setup

Figure 1-1 Oracle SQL Connector for HDFS Installation for HDFS and Data Pump Files

Hadoop
Client

Oracle
Database

Oracle
Database

System
Oracle SQL
Connector
far HOF S
4
P emsEesEeEeEeEsEe== T = Tr|TTF================ a9

Hadoop Cluster |

Data File

Providing Support for Hive Tables

To support access to Hive tables, complete the following procedure on a system set up
as a Hive client for the cluster, where users access HDFS and Hive. If you only plan to
access HDFS and Data Pump format files, then you can omit this procedure.

1-8 Oracle Big Data Connectors User's Guide

Oracle SQL Connector for Hadoop Distributed File System Setup

To support Hive tables from a Hive client system:

1. Download or copy the orahdfs-version.zip file to the system where Hive is
installed.

2. Unzip orahdfs-version.zip into a directory.

3. Add the Hive JAR files and the Hive conf directory to the HADOOP_CLASSPATH
environment variable. To avoid JAR conflicts among the various Hadoop
products, Oracle recommends that you set HADOOP_CLASSPATH in the local shell
initialization script of Oracle SQL Connector for HDFS users instead of making a
global change to HADOOP_CLASSPATH.

Figure 1-2 illustrates the flow of data and the component locations.

Getting Started with Oracle Big Data Connectors 1-9

Oracle SQL Connector for Hadoop Distributed File System Setup

Figure 1-2 Oracle SQL Connector for HDFS Installation for Hive Tables

Hadoop
Client

Oracle
Database

Oracle
Database
System

Oracle SQL
Connector
for HOFS

Hadoop Cluster |

Hive Client

Oracle
SQL Connector
for HDFS

Granting User Privileges in Oracle Database

Oracle Database users require these privileges when using Oracle SQL Connector for
HDFEFS to create external tables:

m CREATE SESSION

1-10 Oracle Big Data Connectors User's Guide

Oracle SQL Connector for Hadoop Distributed File System Setup

s CREATE TABLE
= EXECUTE on the UTL_FILE PL/SQL package

= READ and EXECUTE on the OSCH_BIN_PATH directory created during the installation
of Oracle SQL Connector for HDFS. Do not grant write access to anyone. Grant
EXECUTE only to those who intend to use Oracle SQL Connector for HDFS.

= READ and WRITE on a database directory for storing external tables, or the CREATE
ANY DIRECTORY system privilege.

= A tablespace and quota for copying data into the Oracle database. Optional.

Example 1-2 shows the SQL commands granting these privileges to HDFSUSER.

Example 1-2 Granting Users Access to Oracle SQL Connector for HDFS

CONNECT / AS sysdba;
CREATE USER hdfsuser IDENTIFIED BY password
DEFAULT TABLESPACE hdfsdata
QUOTA UNLIMITED ON hdfsdata;
GRANT CREATE SESSION, CREATE TABLE TO hdfsuser;
GRANT EXECUTE ON sys.utl_file TO hdfsuser;
GRANT READ, EXECUTE ON DIRECTORY osch_bin_path TO hdfsuser;
GRANT READ, WRITE ON DIRECTORY external_table_dir TO hdfsuser;

Note: To query an external table that uses Oracle SQL Connector for
HDFS, users only need the SELECT privilege on the table.

Setting Up User Accounts on the Oracle Database System

To create external tables for HDFS and Data Pump format files, users can log in to
either the Oracle Database system or another system set up as a Hadoop client.

You can set up an account on these systems the same as you would for any other
operating system user. HADOOP_CLASSPATH must include path/orahdfs-2.3.0/jlib/*. You
can add this setting to the shell profile as part of this installation procedure, or users
can set it themselves. The following example alters HADOOP_CLASSPATH in the Bash shell
where Oracle SQL Connector for HDFS is installed in /usr/bin:

export HADOOP_CLASSPATH="S$HADOOP_CLASSPATH: /usr/bin/orahdfs-2.3.0/j1lib/*

Using Oracle SQL Connector for HDFS on a Secure Hadoop Cluster

When users access an external table that was created using Oracle SQL Connector for
HDFS, the external table acts like a Hadoop client running on the system where the
Oracle database is running. It uses the identity of the operating system user where
Oracle is installed.

A secure Hadoop cluster has Kerberos installed and configured to authenticate client
activity. You must configure Oracle SQL Connector for HDFS for use with a Hadoop
cluster secured by Kerberos.

For a user to authenticate using kinit:

= A Hadoop administrator must register the operating system user (such as oracle)
and password in the Key Distribution Center (KDC) for the cluster.

= A system administrator for the Oracle Database system must configure
/etc/krb5.conf and add a domain definition that refers to the KDC managed by
the secure cluster.

Getting Started with Oracle Big Data Connectors 1-11

Oracle Loader for Hadoop Setup

These steps enable the operating system user to authenticate with the kinit utility
before submitting Oracle SQL Connector for HDFES jobs. The kinit utility typically
uses a Kerberos keytab file for authentication without an interactive prompt for a
password. The system should run kinit on a regular basis, before letting the Kerberos
ticket expire, to enable Oracle SQL Connector for HDES to authenticate transparently.

Use cron or a similar utility to run kinit. Do not call kinit within the Oracle SQL
Connector for HDFS preprocessor script (hdfs_stream), because it could trigger a high
volume of concurrent calls to kinit and create internal Kerberos caching errors.

Note: Oracle Big Data Appliance configures Kerberos security
automatically as a configuration option. For details about setting up
client systems for a secure Oracle Big Data Appliance cluster, see
Oracle Big Data Appliance Software User’s Guide.

Oracle Loader for Hadoop Setup

Follow the instructions in these sections for setting up Oracle Loader for Hadoop:
= Software Requirements

= Installing Oracle Loader for Hadoop

= Providing Support for Offline Database Mode

= Using Oracle Loader for Hadoop on a Secure Hadoop Cluster

Software Requirements

Oracle Loader for Hadoop requires the following software:
= A target database system running one of the following:
— Oracle Database 12¢c
— Oracle Database 11¢ release 2 (11.2.0.3)
— Oracle Database 11g release 2 (11.2.0.2) with required patch
— Oracle Database 10g release 2 (10.2.0.5)

Note: To use Oracle Loader for Hadoop with Oracle Database 11g
release 2 (11.2.0.2), you must first apply a one-off patch that addresses
bug number 11897896. To access this patch, go to
http://support.oracle.comand search for the bug number.

s Cloudera's Distribution including Apache Hadoop version 3 (CDH3) or version 4
(CDH4), or Apache Hadoop 1.0 (formerly 0.20.2).

= Apache Hive 0.7.0,0.8.1, 0.9.0, or 0.10.0 if you are loading data from Hive tables.

Installing Oracle Loader for Hadoop

Oracle Loader for Hadoop is packaged with the Oracle Database 11g release 2 client
libraries and Oracle Instant Client libraries for connecting to Oracle Database 11.2.0.2
or 11.2.0.3.

To install Oracle Loader for Hadoop:

1-12 Oracle Big Data Connectors User's Guide

Oracle Loader for Hadoop Setup

1. Unpack the content of oraloader-version.x86_64.zip into a directory on your
Hadoop cluster or on a system configured as a Hadoop client. This archive
contains two archives:

» oraloader-version-h1.x86_64.zip: Use with CDH3 and Apache Hadoop 1.0
s oraloader-version-h2.x86_64.zip: Use with CDH4
2. Unzip the appropriate archive into a directory on your Hadoop cluster.

A directory named oraloader-version-hn is created with the following
subdirectories:

doc

j1ib

lib

examples
3. Create a variable named OLH_HOME and set it to the installation directory.
4. Add the following paths to the HADOOP_CLASSPATH variable:

= For all installations:

SOLH_HOME/jlib/*

= To support data loads from Hive tables:

path/orahdfs-2.3.0/jlib/*

/usr/lib/hive/lib/*

/etc/hive/conf

See "Specifying Hive Input Format JAR Files" on page 3-22.
s Toread data from Oracle NoSQL Database Release 2:

SKVHOME/lib/kvstore.jar

Providing Support for Offline Database Mode

In a typical installation, Oracle Loader for Hadoop can connect to the Oracle Database
system from the Hadoop cluster or a Hadoop client. If this connection is
impossible—for example, the systems are located on distinct networks—then you can
use Oracle Loader for Hadoop in offline database mode. See "About the Modes of
Operation" on page 3-2.

To support offline database mode, you must install Oracle Loader for Hadoop on two
systems:

= The Hadoop cluster or a system set up as a Hadoop client, as described in
"Installing Oracle Loader for Hadoop" on page 1-12.

s The Oracle Database system or a system with network access to Oracle Database,
as described in the following procedure.

To support Oracle Loader for Hadoop in offline database mode:

1. Unpack the content of oraloader-version.zip into a directory on the Oracle
Database system or a system with network access to Oracle Database.

2. Unzip the same version of the software as you installed on the Hadoop cluster,
either for CDH3 or CDH4.

3. Create a variable named OLH_HOME and set it to the installation directory. This
example uses the Bash shell syntax:

Getting Started with Oracle Big Data Connectors 1-13

Oracle Data Integrator Application Adapter for Hadoop Setup

$ export OLH_HOME="/usr/bin/oraloader-2.3.0-h2/"

4. Add the Oracle Loader for Hadoop JAR files to the CLASSPATH environment
variable. This example uses the Bash shell syntax:

$ export CLASSPATH=$SCLASSPATH:S$OLH_HOME/jlib/*

Using Oracle Loader for Hadoop on a Secure Hadoop Cluster

A secure Hadoop cluster has Kerberos installed and configured to authenticate client
activity. An operating system user must be authenticated before initiating an Oracle
Loader for Hadoop job to run on a secure Hadoop cluster. For authentication, the user
must log in to the operating system where the job will be submitted and use the
standard Kerberos kinit utility.

For a user to authenticate using kinit:

= A Hadoop administrator must register the operating system user and password in
the Key Distribution Center (KDC) for the cluster.

= A system administrator for the client system, where the operating system user will
initiate an Oracle Loader for Hadoop job, must configure /etc/krb5.conf and add
a domain definition that refers to the KDC managed by the secure cluster.

Typically, the kinit utility obtains an authentication ticket that lasts several days.
Subsequent Oracle Loader for Hadoop jobs authenticate transparently using the
unexpired ticket.

Note: Oracle Big Data Appliance configures Kerberos security
automatically as a configuration option. For details about setting up
client systems for a secure Oracle Big Data Appliance cluster, see
Oracle Big Data Appliance Software User’s Guide.

Oracle Data Integrator Application Adapter for Hadoop Setup

Installation requirements for Oracle Data Integrator (ODI) Application Adapter for
Hadoop are provided in these topics:

= System Requirements and Certifications

» Technology-Specific Requirements

= Location of Oracle Data Integrator Application Adapter for Hadoop
= Setting Up the Topology

System Requirements and Certifications

To use Oracle Data Integrator Application Adapter for Hadoop, you must first have
Oracle Data Integrator, which is licensed separately from Oracle Big Data Connectors.
You can download ODI from the Oracle website at

http://www.oracle.com/technetwork/middleware/data-integrator/downloads/ind
ex.html

Oracle Data Integrator Application Adapter for Hadoop requires a minimum version
of Oracle Data Integrator 11.1.1.6.0.

1-14 Oracle Big Data Connectors User's Guide

Oracle XQuery for Hadoop Setup

Before performing any installation, read the system requirements and certification
documentation to ensure that your environment meets the minimum installation
requirements for the products that you are installing.

The list of supported platforms and versions is available on Oracle Technology
Network:

http://www.oracle.com/technetwork/middleware/data-integrator/overview/inde
x.html

Technology-Specific Requirements

The list of supported technologies and versions is available on Oracle Technical
Network:

http://www.oracle.com/technetwork/middleware/data-integrator/overview/inde
x.html

Location of Oracle Data Integrator Application Adapter for Hadoop

Oracle Data Integrator Application Adapter for Hadoop is available in the
xml-reference directory of the Oracle Data Integrator Companion CD.

Setting Up the Topology

To set up the topology, see Chapter 4, "Oracle Data Integrator Application Adapter for
Hadoop."

Oracle XQuery for Hadoop Setup

You install and configure Oracle XQuery for Hadoop on the Hadoop cluster. If you are
using Oracle Big Data Appliance, then the software is already installed.

The following topics describe the software installation:
= Software Requirements

= Installing Oracle XQuery for Hadoop

= Troubleshooting the File Paths

Software Requirements

Oracle Big Data Appliance 2.3 meets the following software requirements. However, if
you are installing Oracle XQuery for Hadoop on a third-party cluster, then you must
ensure that these components are installed.

s Javab6.xor7.x

» Cloudera's Distribution including Apache Hadoop Version 3 (CDH 3.3 or above)
or Version 4 (CDH 4.1.2 or above)

s Oracle NoSQL Database 2.x to support reading and writing to Oracle NoSQL
Database

= Oracle Loader for Hadoop 2.3 to support writing tables in Oracle databases
Installing Oracle XQuery for Hadoop

Take the following steps to install Oracle XQuery for Hadoop.

Getting Started with Oracle Big Data Connectors 1-15

http://www.oracle.com/technology/products/oracle-data-integrator/index.html
http://www.oracle.com/technology/products/oracle-data-integrator/index.html
http://www.oracle.com/technetwork/middleware/data-integrator/overview/index.html

Oracle XQuery for Hadoop Setup

To install Oracle XQuery for Hadoop:
1. Unpack the contents of oxh-version.zip into the installation directory:

$ unzip oxh-2.3.0-cdh-4.4.0.zip
Archive: oxh-2.3.0-cdh-4.4.0.zip
creating: oxh-2.3.0-cdh-4.4.0/
creating: oxh-2.3.0-cdh-4.4.0/1ib/
inflating: oxh-2.3.0-cdh-4.4.0/1lib/ant-launcher.jar
inflating: oxh-2.3.0-cdh-4.4.0/1ib/ant.jar
inflating: oxh-2.3.0-cdh-4.4.0/1ib/apache-xmlbeans.jar
3 4

inflating: oxh-2.3.0-cdh-4.4.0/1lib/avro-mapred-1.7.4-hadoop2.jar

You can now run Oracle XQuery for Hadoop.

2. To support data loads into Oracle Database, install Oracle Loader for Hadoop as
follows:

a. Unpack the content of oraloader-version.x86_64.zip into a directory on
your Hadoop cluster or on a system configured as a Hadoop client. This
archive contains two archives:

oraloader-version-h1.x86_64.zip: Use with CDH3 and Apache Hadoop 1.0
oraloader-version-h2.x86_64.zip: Use with CDH4
b. Unzip the appropriate archive into a directory on your Hadoop cluster.

A directory named oraloader-version-hn is created with the following
subdirectories:

doc

jlib

lib
examples

c. Create an environment variable named OLH_HOME and set it to the installation
directory. Do not set HADOOP_CLASSPATH.

3. To support data loads into Oracle NoSQL Database, install it, and then set an
environment variable named KVHOMEto the Oracle NoSQL Database installation
directory.

Troubleshooting the File Paths

If Oracle XQuery for Hadoop fails to find its own or third-party libraries when
running queries, then first ensure that the environment variables are set, as described
in "Installing Oracle XQuery for Hadoop" on page 1-15.

If they are set correctly, then you may need to edit lib/oxh-lib.xml. This file identifies
the location of Oracle XQuery for Hadoop system JAR files and other libraries, such as
Avro, Oracle Loader for Hadoop, and Oracle NoSQL Database.

If necessary, you can reference environment variables in this file as $ {env. variable},
such as $ {env.OLH_HOME}. You can also reference Hadoop properties as ${property},
such as ${mapred.output.dir}.

1-16 Oracle Big Data Connectors User's Guide

Oracle R Advanced Analytics for Hadoop Setup

Oracle R Advanced Analytics for Hadoop Setup

Oracle R Advanced Analytics for Hadoop requires the installation of a software
environment on the Hadoop side and on a client Linux system.

Installing the Software on Hadoop

Oracle Big Data Appliance supports Oracle R Advanced Analytics for Hadoop
without any additional software installation or configuration. However, you do need
to verify whether certain R packages are installed. See "Installing Additional R
Packages" on page 1-20.

However, to use Oracle R Advanced Analytics for Hadoop on any other Hadoop
cluster, you must create the necessary environment.

Software Requirements for a Third-Party Hadoop Cluster

You must install several software components on a third-party Hadoop cluster to
support Oracle R Advanced Analytics for Hadoop.

Install these components on third-party servers:

s Cloudera’s Distribution including Apache Hadoop version 4 (CDH4) or Apache
Hadoop 2.0.0, using MapReduce 1.

Complete the instructions provided by the distributor.
= Apache Hive 0.7.1 or 0.9.0
See "Installing Hive on a Hadoop Cluster" on page 1-18.

= Sqoop for the execution of functions that connect to Oracle Database. Oracle R
Advanced Analytics for Hadoop does not require Sqoop to install or load.

See "Installing Sqoop on a Hadoop Cluster" on page 1-18.

= Mahout for the execution of (orch_lmf_mahout_als.R).

= Java Virtual Machine (JVM), preferably Java HotSpot Virtual Machine 6.
Complete the instructions provided at the download site at
http://www.oracle.com/technetwork/java/javase/downloads/index.html

= Oracle R Distribution 2.15.1 with all base libraries on all nodes in the Hadoop
cluster.

See "Installing R on a Hadoop Cluster" on page 1-19.

s The ORCH package on each R engine, which must exist on every node of the
Hadoop cluster.

See "Installing the ORCH Package on a Hadoop Cluster" on page 1-19.

= Oracle Loader for Hadoop to support the OLH driver (optional). See "Oracle
Loader for Hadoop Setup" on page 1-12.

Getting Started with Oracle Big Data Connectors 1-17

http://www.oracle.com/technetwork/java/javase/downloads/index.html

Oracle R Advanced Analytics for Hadoop Setup

Note: Do not set HADOOP_HOME on the Hadoop cluster. CDH4 does not
need it, and it interferes with Oracle R Advanced Analytics for
Hadoop when it checks the status of the JobTracker. This results in the
error "Something is terribly wrong with Hadoop MapReduce."

If you must set HADOOP_HOME for another application, then also set
HADOOP_LIBEXEC_DIR in the /etc/bashrc file. For example:

export HADOOP_LIBEXEC_DIR=/usr/lib/hadoop/libexec

Installing Sqoop on a Hadoop Cluster

Sqoop provides a SQL-like interface to Hadoop, which is a Java-based environment.
Oracle R Advanced Analytics for Hadoop uses Sqoop for access to Oracle Database.

Note: Sqoop is required even when using Oracle Loader for Hadoop
as a driver for loading data into Oracle Database. Sqoop performs
additional functions, such as copying data from a database to HDFS
and sending free-form queries to a database. The driver also uses
Sqoop to perform operations that Oracle Loader for Hadoop does not
support.

To install and configure Sqoop for use with Oracle Database:

1.

Install Sqoop if it is not already installed on the server.

For Cloudera's Distribution including Apache Hadoop, see the Sqoop installation
instructions in the CDH Installation Guide at

http://oracle.cloudera.com/

Download the appropriate Java Database Connectivity (JDBC) driver for Oracle
Database from Oracle Technology Network at

http://www.oracle.com/technetwork/database/features/jdbc/index-091264.h
tml

Copy the driver JAR file to $SQ00P_HOME/lib, which is a directory such as
/usr/lib/sqoop/lib.

Provide Sqoop with the connection string to Oracle Database.

$ sgoop import --connect jdbc connection_string

For example, sqoop import --connect jdbc:oracle:thin@myhost:1521/orcl.

Installing Hive on a Hadoop Cluster

Hive provides an alternative storage and retrieval mechanism to HDFS files through a
querying language called HiveQL. Oracle R Advanced Analytics for Hadoop uses the
data preparation and analysis features of HiveQL, while enabling you to use R
language constructs.

To install Hive:

1.

Follow the instructions provided by the distributor (Cloudera or Apache) for
installing Hive.

Verify that the installation is working correctly:

$ hive -H

1-18 Oracle Big Data Connectors User's Guide

http://www.oracle.com/technetwork/database/features/jdbc/index-091264.html
http://www.oracle.com/technetwork/database/features/jdbc/index-091264.html

Oracle R Advanced Analytics for Hadoop Setup

3.

usage: hive

-d, --define <key=value> Variable subsitution to apply to hive
commands. e.g. -d A=B or --define A=B
--database <databasename> Specify the database to use
-e <quoted-query-string> SQL from command line
-f <filename> SQL from files
-H, --help Print help information
-h <hostname> connecting to Hive Server on remote host
--hiveconf <property=value> Use value for given property
--hivevar <key=value> Variable subsitution to apply to hive
commands. e.g. --hivevar A=B
-1 <filename> Initialization SQL file
-p <port> connecting to Hive Server on port number
-S,--silent Silent mode in interactive shell
-v, --verbose Verbose mode (echo executed SQL to the
console)

If the command fails or you see warnings in the output, then fix the Hive
installation.

Installing R on a Hadoop Cluster

You can download Oracle R Distribution 2.15.1 and get the installation instructions

from the website at

http://www.oracle.com/technetwork/indexes/downloads/r-distribution-1532464

.html

Alternatively, you can download R from a Comprehensive R Archive Network
(CRAN) website at

http://www.r-project.org

Installing the ORCH Package on a Hadoop Cluster
ORCH is the name of the Oracle R Advanced Analytics for Hadoop package.

To install the ORCH package:

1.

Set the environment variables for the supporting software:

$ export JAVA_HOME="/usr/lib/jdk6"
$ export R_HOME="/usr/lib64/R"
$ export SQOOP_HOME "/usr/lib/sgoop"

Unzip the downloaded file:

$ unzip orch-version.zip
Archive: orch-linux-x86_64-2.3.0.zip
extracting: ORCH2.3.0/0ORCH_2.3.0_R_x86_64-unknown-linux-gnu.tar.gz
inflating: ORCH2.3.0/ORCHcore_2.3.0_R_x86_64-unknown-linux-gnu.tar.gz
inflating: ORCH2.3.0/OREbase_1.3.1_R_x86_64-unknown-linux-gnu.tar.gz
inflating: ORCH2.3.0/OREstats_1.3.1_R_x86_64-unknown-linux-gnu.tar.gz

Change to the new directory:

$ cd ORCH2.3.0

Install the packages in the exact order shown here:

Getting Started with Oracle Big Data Connectors 1-19

http://www.oracle.com/technetwork/indexes/downloads/r-distribution-1532464.html
http://www.oracle.com/technetwork/indexes/downloads/r-distribution-1532464.html

Oracle R Advanced Analytics for Hadoop Setup

--vanilla CMD INSTALL OREbase_1.4_R_x86_64-unknown-linux-gnu.tar.gz
--vanilla CMD INSTALL OREstats_1.4_R_x86_64-unknown-linux-gnu.tar.gz
--vanilla CMD INSTALL OREmodels_1.4_R_x86_64-unknown-linux-gnu.tar.gz
--vanilla CMD INSTALL OREserver_1l.4_R_x86_64-unknown-linux-gnu.tar.gz
--vanilla CMD INSTALL ORCHcore_2.3.0_R_x86_64-unknown-linux-gnu.tar.gz
--vanilla CMD INSTALL ORCHstats_2.3.0_R_x86_64-unknown-linux-gnu.tar.gz
--vanilla CMD INSTALL ORCH_2.3.0_R_x86_64-unknown-linux-gnu.tar.gz

2SI s I= e B B e e B

You must also install these packages on all other nodes of the cluster:
= OREbase

= OREmodels

= OREserver

= OREstats

The following examples use the dcli utility, which is available on Oracle Big Data
Appliance but not on third-party clusters, to copy and install the OREserver
package:

$ dcli -C -f OREserver_1.4_R_x86_64-unknown-linux-gnu.tar.gz -d /tmp/
OREserver_1.4_R_x86_64-unknown-linux-gnu.tar.gz

$ dcli -C " R --vanilla CMD INSTALL /tmp/OREserver_1.4_R_x86_
64-unknown-linux-gnu.tar.gz"

Installing Additional R Packages

Your Hadoop cluster must have 1ibpng-devel installed on every node. If you are
using a cluster running on commodity hardware, then you can follow the same basic
procedures. However, you cannot use the dcl1i utility to replicate the commands
across all nodes. See the Oracle Big Data Appliance Owner’s Guide for the syntax of the
dcli utility.

To install libpng-devel:

1.
2

Log in as root to any node in your Hadoop cluster.
Check whether 1ibpng-devel is already installed:

dcli rpm -qi libpng-devel
bdalnode0l: package libpng-devel is not installed
bdalnode02: package libpng-devel is not installed

If the package is already installed on all servers, then you can skip this procedure.

If you need a proxy server to go outside a firewall, then set the HTTP_PROXY
environment variable:

dcli export HTTP_PROXY="http://proxy.example.com"

Change to the yum directory:

cd /etc/yum.repos.d

Download and configure the appropriate configuration file for your version of
Linux:

For Enterprise Linux 5 (EL5):

1-20 Oracle Big Data Connectors User's Guide

Oracle R Advanced Analytics for Hadoop Setup

For

a. Download the yum configuration file:

wget http://public-yum.oracle.com/public-yum-el5.repo

b. Open public-yum-el5.repo in a text editor and make these changes:
Under el5_latest, set enabled=1
Under el5_addons, set enabled=1

c. Save your changes and exit.

d. Copy the file to the other Oracle Big Data Appliance servers:

dcli -d /etc/yum.repos.d -f public-yum-el5.repo

Oracle Linux 6 (OL6):
a. Download the yum configuration file:

wget http://public-yum.oracle.com/public-yum-0l6.repo

b. Open public-yum-ol6.repo in a text editor and make these changes:
Under 0l16_latest, set enabled=1
Under 016_addons, set enabled=1

c. Save your changes and exit.

d. Copy the file to the other Oracle Big Data Appliance servers:

dcli -d /etc/yum.repos.d -f public-yum-o0l6.repo

Install the package on all servers:

dcli yum -y install libpng-devel

bdalnode0l: Loaded plugins: rhnplugin, security

bdalnode0l: Repository 'bda' is missing name in configuration, using id
bdalnode0l: This system is not registered with ULN.

bdalnode0l: ULN support will be disabled.

bdalnode0l: http://bdalnodell-master.us.oracle.com/bda/repodata/repomd.xml:
bdalnode0l: [Errno 14] HTTP Error 502: notresolvable

bdalnodel0l: Trying other mirror.

bdalnode0l: Running Transaction
bdalnode0l: Installing : libpng-devel 1/2
bdalnode0l: Installing : libpng-devel 2/2

bdalnode0l: Installed:
bdalnode0l: libpng-devel.i386 2:1.2.10-17.el5_8 ibpng-devel.x86_64
2:1.2.10-17.el15_8

bdalnode0l: Complete!
bdalnode02: Loaded plugins: rhnplugin, security

Verify that the installation was successful on all servers:

dcli rpm -qi libpng-devel
bdalnode0l: Name : libpng-devel Relocations: (not
relocatable)

Getting Started with Oracle Big Data Connectors 1-21

Oracle R Advanced Analytics for Hadoop Setup

bdalnodell: Version ;0 1.2.10 Vendor: Oracle
America
bdalnodel0l: Release : 17.el15_8 Build Date: Wed 25

Apr 2012 06:51:15 AM PDT
bdalnode0l: Install Date: Tue 05 Feb 2013 11:41:14 AM PST Build Host:
ca-build56.us.oracle.com

bdalnode0l: Group : Development/Libraries Source RPM:
libpng-1.2.10-17.el5_8.src.rpm

bdalnodell: Size : 482483 License: zlib
bdalnode0l: Signature : DSA/SHALl, Wed 25 Apr 2012 06:51:41 AM PDT, Key ID
66ced3deleb5e0159

bdalnode0l: URL : http://www.libpng.org/pub/png/

bdalnode0l: Summary : Development tools for programs to manipulate PNG

image format files.

bdalnode0l: Description :

bdalnode0l: The libpng-devel package contains the header files and static
bdalnode0l: libraries necessary for developing programs using the PNG (Portable
bdalnode0l: Network Graphics) library.

Providing Remote Client Access to R Users

Whereas R users will run their programs as MapReduce jobs on the Hadoop cluster,
they do not typically have individual accounts on that platform. Instead, an external
Linux server provides remote access.

Software Requirements for Remote Client Access

To provide access to a Hadoop cluster to R users, install these components on a Linux
server:

s The same version of Hadoop as your Hadoop cluster; otherwise, unexpected
issues and failures can occur

= The same version of Sqoop as your Hadoop cluster; required only to support
copying data in and out of Oracle databases

= Mahout; required only for the orch.1s function with the Mahout ALS-WS
algorithm

= The same version of the Java Development Kit (JDK) as your Hadoop cluster
= Rdistribution 2.15.1 with all base libraries
= ORCH R package

To provide access to database objects, you must have the Oracle Advanced Analytics
option to Oracle Database. Then you can install this additional component on the
Hadoop client:

= Oracle R Enterprise Client Packages

Configuring the Server as a Hadoop Client
You must install Hadoop on the client and minimally configure it for HDFS client use.

To install and configure Hadoop on the client system:

1. Install and configure CDH3 or Apache Hadoop 0.20.2 on the client system. This
system can be the host for Oracle Database. If you are using Oracle Big Data
Appliance, then complete the procedures for providing remote client access in the

1-22 Oracle Big Data Connectors User's Guide

Oracle R Advanced Analytics for Hadoop Setup

Oracle Big Data Appliance Software User’s Guide. Otherwise, follow the installation
instructions provided by the distributor (Cloudera or Apache).

2. Login to the client system as an R user.
3. Open a Bash shell and enter this Hadoop file system command:

$HADOOP_HOME/bin/hadoop fs -1s /user

4. If you see a list of files, then you are done. If not, then ensure that the Hadoop
cluster is up and running. If that does not fix the problem, then you must debug
your client Hadoop installation.

Installing Sqoop on a Hadoop Client

Complete the same procedures on the client system for installing and configuring
Sqoop as those provided in "Installing Sqoop on a Hadoop Cluster" on page 1-18.

Installing R on a Hadoop Client

You can download R 2.13.2 and get the installation instructions from the Oracle R
Distribution website at

http://oss.oracle.com/ORD/

When you are done, ensure that users have the necessary permissions to connect to the
Linux server and run R.

You may also want to install RStudio Server to facilitate access by R users. See the
RStudio website at

http://rstudio.org/

Installing the ORCH Package on a Hadoop Client

Complete the procedures on the client system for installing ORCH as described in
"Installing the Software on Hadoop" on page 1-17.

Installing the Oracle R Enterprise Client Packages (Optional)

To support full access to Oracle Database using R, install the Oracle R Enterprise
Release 1.3.1 or later client packages. Without them, Oracle R Advanced Analytics for
Hadoop does not have access to the advanced statistical algorithms provided by
Oracle R Enterprise.

See Also: Oracle R Enterprise User’s Guide for information about
installing R and Oracle R Enterprise

Getting Started with Oracle Big Data Connectors 1-23

Oracle R Advanced Analytics for Hadoop Setup

1-24 Oracle Big Data Connectors User's Guide

Part Il

Oracle Database Connectors

This part contains the following chapters:

» Chapter 2, "Oracle SQL Connector for Hadoop Distributed File System"
» Chapter 3, "Oracle Loader for Hadoop"

» Chapter 4, "Oracle Data Integrator Application Adapter for Hadoop"

2

Oracle SQL Connector for Hadoop Distributed
File System

This chapter describes how to use Oracle SQL Connector for Hadoop Distributed File
System (HDFS) to facilitate data access between Hadoop and Oracle Database.

This chapter contains the following sections:

s About Oracle SQL Connector for HDFS

s Getting Started With Oracle SQL Connector for HDFS

= Configuring Your System for Oracle SQL Connector for HDFS
= Using the ExternalTable Command-Line Tool

» Creating External Tables

s Publishing the HDFS Data Paths

» Listing Location File Metadata and Contents

s Describing External Tables

= More About External Tables Generated by the ExternalTable Tool
s Configuring Oracle SQL Connector for HDFS

s Performance Tips for Querying Data in HDFS

About Oracle SQL Connector for HDFS

Using Oracle SQL Connector for HDFS, you can use Oracle Database to access and
analyze data residing in Apache Hadoop in these formats:

= Data Pump files in HDFS
s Delimited text files in HDFS
= Delimited text files in Apache Hive tables

For other file formats, such as JSON files, you can stage the input in Hive tables before
using Oracle SQL Connector for HDFS. Partitioned Hive tables are not supported.

Oracle SQL Connector for HDFS uses external tables to provide Oracle Database with
read access to Hive tables, and to delimited text files and Data Pump files in HDFS. An
external table is an Oracle Database object that identifies the location of data outside
of a database. Oracle Database accesses the data by using the metadata provided when
the external table was created. By querying the external tables, you can access data
stored in HDFS and Hive tables as if that data were stored in tables in an Oracle
database.

Oracle SQL Connector for Hadoop Distributed File System 2-1

Getting Started With Oracle SQL Connector for HDFS

To create an external table for this purpose, you use the ExternalTable command-line
tool provided with Oracle SQL Connector for HDFS. You provide ExternalTable with
information about the data source in Hadoop and about your schema in an Oracle
Database. You provide this information either as options to the ExternalTable
command or in an XML file.

When the external table is ready, you can query the data the same as any other
database table. You can query and join data in HDFS or a Hive table with other
database-resident data.

You can also perform bulk loads of data into Oracle database tables using SQL. You
may prefer that the data resides in an Oracle database—all of it or just a selection—if it
is queried routinely.

Getting Started With Oracle SQL Connector for HDFS

The following list identifies the basic steps that you take when using Oracle SQL
Connector for HDFS.

1. The first time you use Oracle SQL Connector for HDFS, ensure that the software is
installed and configured.

See "Configuring Your System for Oracle SQL Connector for HDFS" on page 2-5.

2. Login to the appropriate system, either the Oracle Database system or a node in
the Hadoop cluster. If you are connecting to a secure cluster, then you must run
kinit to authenticate yourself.

See "Configuring Your System for Oracle SQL Connector for HDFS" on page 2-5.

3. Create an XML document describing the connections and the data source, unless
you are providing these properties in the ExternalTable command.

See "Describing External Tables" on page 2-18.
4. Create a shell script containing an ExternalTable command.
See "Using the ExternalTable Command-Line Tool" on page 2-6.
5. Run the shell script.

6. If the job fails, then use the diagnostic messages in the output to identify and
correct the error. Depending on how far the job progressed before failing, you may
need to delete the table definition from the Oracle database before rerunning the
script.

7. After the job succeeds, connect to Oracle Database as the owner of the external
table. Query the table to ensure that the data is accessible.

8. If the data will be queried frequently, then you may want to load it into a database
table. External tables do not have indexes or partitions.

Example 2-1 illustrates these steps.

Example 2-1 Accessing HDFS Data Files from Oracle Database

$ cat moviefact_hdfs.sh
Add environment variables
export OSCH_HOME="/u0l/connectors/orahdfs-2.3.0"

hadoop jar $OSCH_HOME/jlib/orahdfs.jar \

oracle.hadoop.exttab.ExternalTable \
-conf /home/oracle/movies/moviefact_hdfs.xml \

2-2 Oracle Big Data Connectors User's Guide

Getting Started With Oracle SQL Connector for HDFS

-createTable

$ cat moviefact_hdfs.xml
<?xml version="1.0"?>
<configuration>
<property>
<name>oracle.hadoop.exttab.tableName</name>
<value>MOVIE_FACTS_EXT</value>
</property>
<property>
<name>oracle.hadoop.exttab.locationFileCount</name>
<value>4</value>
</property>
<property>
<name>oracle.hadoop.exttab.dataPaths</name>
<value>/user/oracle/moviework/data/part*</value>
</property>
<property>
<name>oracle.hadoop.exttab.fieldTerminator</name>
<value>\u0009</value>
</property>
<property>
<name>oracle.hadoop.exttab.defaultDirectory</name>
<value>MOVIEDEMO_DIR</value>
</property>
<property>
<name>oracle.hadoop.exttab.columnNames</name>
<value>CUST_ID,MOVIE_ID,GENRE_ID, TIME_ID, RECOMMENDED,ACTIVITY_
ID,RATING, SALES</value>
</property>
<property>
<name>oracle.hadoop.exttab.colMap.TIME_ID.columnType</name>
<value>TIMESTAMP</value>
</property>
<property>
<name>oracle.hadoop.exttab.colMap.RECOMMENDED. columnType</name>
<value>NUMBER</value>
</property>
<property>
<name>oracle.hadoop.exttab.colMap.ACTIVITY ID.columnType</name>
<value>NUMBER</value>
</property>
<property>
<name>oracle.hadoop.exttab.colMap.RATING. columnType</name>
<value>NUMBER</value>
</property>
<property>
<name>oracle.hadoop.exttab.colMap.SALES. columnType</name>
<value>NUMBER</value>
</property>
<property>
<name>oracle.hadoop.exttab.sourceType</name>
<value>text</value>
</property>
<property>
<name>oracle.hadoop.connection.url</name>
<value>jdbc:oracle:thin:@localhost:1521:0rcl</value>
</property>
<property>
<name>oracle.hadoop.connection.user</name>

Oracle SQL Connector for Hadoop Distributed File System 2-3

Getting Started With Oracle SQL Connector for HDFS

<value>MOVIEDEMO</value>
</property>
</configuration>

$ sh moviefact_hdfs.sh
Oracle SQL Connector for HDFS Release 2.3.0 - Production

Copyright (c) 2011, 2013, Oracle and/or its affiliates. All rights reserved.

[Enter Database Password: password]
The create table command succeeded.

CREATE TABLE "MOVIEDEMO"."MOVIE_FACTS_EXT"
(

"CUST_ID" VARCHAR2 (4000) ,
"MOVIE_ID" VARCHAR2 (4000) ,
"GENRE_ID" VARCHAR2 (4000) ,
"TIME_ID" TIMESTAMP (9) ,
"RECOMMENDED" NUMBER,
"ACTIVITY_ID" NUMBER,
"RATING" NUMBER,

"SALES" NUMBER

)
ORGANIZATION EXTERNAL
(
TYPE ORACLE_LOADER
DEFAULT DIRECTORY "MOVIEDEMO_DIR"
ACCESS PARAMETERS
(
RECORDS DELIMITED BY 0X'OA'
CHARACTERSET AL32UTF8
PREPROCESSOR "OSCH_BIN_PATH":'hdfs_stream'
FIELDS TERMINATED BY 0X'09'
MISSING FIELD VALUES ARE NULL
(
"CUST_ID" CHAR(4000),
"MOVIE_ID" CHAR(4000),
"GENRE_ID" CHAR(4000),
"TIME_ID" CHAR,
"RECOMMENDED" CHAR,
"ACTIVITY_ID" CHAR,
"RATING" CHAR,
"SALES" CHAR

)
LOCATION

(
'osch-20131114064206-5250-1",
'osch-20131114064206-5250-2",
'osch-20131114064206-5250-3",
'osch-20131114064206-5250-4"
)
) PARALLEL REJECT LIMIT UNLIMITED;

The following location files were created.
0sch-20131114064206-5250-1 contains 1 URI, 12754882 bytes

12754882
hdfs://localhost.localdomain:8020/user/oracle/moviework/data/part-00001

2-4 Oracle Big Data Connectors User's Guide

Configuring Your System for Oracle SQL Connector for HDFS

0sch-20131114064206-5250-2 contains 1 URI, 438 bytes

438
hdfs://localhost.localdomain:8020/user/oracle/moviework/data/part-00002

0sch-20131114064206-5250-3 contains 1 URI, 432 bytes

432
hdfs://localhost.localdomain:8020/user/oracle/moviework/data/part-00003

osch-20131114064206-5250-4 contains 1 URI, 202 bytes

202
hdfs://localhost.localdomain:8020/user/oracle/moviework/data/part-00004

$ sqlplus moviedemo
SQL*Plus: Release 12.1.0.1.0 Production on Fri Nov 15 09:24:18 2013
Copyright (c) 1982, 2013, Oracle. All rights reserved.

Enter password: password
Last Successful login time: Thu Nov 14 2013 18:42:01 -05:00

Connected to:

Oracle Database 12c Enterprise Edition Release 12.1.0.1.0 - 64bit Production
With the Partitioning, OLAP, Advanced Analytics and Real Application Testing
options

SQL> DESCRIBE movie_facts_ext;

Name Null? Type

CUST_ID VARCHAR2 (4000)
MOVIE_ID VARCHAR2 (4000)
GENRE_ID VARCHAR2 (4000)
TIME_ID TIMESTAMP (9)
RECOMMENDED NUMBER
ACTIVITY_ID NUMBER

RATING NUMBER

SALES NUMBER

SQL> CREATE TABLE movie facts AS SELECT * FROM movie_facts_ext;

Table created.

Configuring Your System for Oracle SQL Connector for HDFS

You can run Oracle SQL Connector for HDFS on either the Oracle Database system or
the Hadoop cluster:

= For Hive sources, you must log in to either a node in the Hadoop cluster or a
system set up as a Hadoop client for the cluster.

» For text and Data Pump format files, you can log in to either the Oracle Database
system or a node in the Hadoop cluster.

Oracle SQL Connector for HDFS requires additions to the HADOOP_CLASSPATH
environment variable on the system where you log in. Your system administrator may
have set them up for you when creating your account, or may have left that task for
you. See "Setting Up User Accounts on the Oracle Database System" on page 1-11.

Oracle SQL Connector for Hadoop Distributed File System 2-5

Using the ExternalTable Command-Line Tool

Setting up the environment variables:

= Verify that HADOOP_CLASSPATH includes the path to the JAR files for Oracle SQL
Connector for HDFS:

path/orahdfs-2.3.0/jlib/*
s If you are logged in to a Hadoop cluster with Hive data sources, then verify that

HADOOP_CLASSPATH also includes the Hive JAR files and conf directory. For
example:

/usr/lib/hive/1ib/*
/etc/hive/conf

= For your convenience, you can create an 0SCH_HOME environment variable. The
following is the Bash command for setting it on Oracle Big Data Appliance:

$ export OSCH_HOME="/opt/oracle/orahdfs-2.3.0"

See Also: "Oracle SQL Connector for Hadoop Distributed File
System Setup" on page 1-4 for instructions for installing the software
and setting up user accounts on both systems.

OSCH_HOME /doc/README.txt for information about known
problems with Oracle SQL Connector for HDFS.

Using the ExternalTable Command-Line Tool

Oracle SQL Connector for HDFS provides a command-line tool named
ExternalTable. This section describes the basic use of this tool. See "Creating External
Tables" on page 2-8 for the command syntax that is specific to your data source format.

About ExternalTable
The ExternalTable tool uses the values of several properties to do the following tasks:
» Create an external table
= Populate the location files
= Publish location files to an existing external table
= List the location files
= Describe an external table

You can specify these property values in an XML document or individually on the
command line. See "Configuring Oracle SQL Connector for HDFS" on page 2-21..

ExternalTable Command-Line Tool Syntax
This is the full syntax of the ExternalTable command-line tool:

hadoop jar OSCH_HOME/jlib/orahdfs.jar \
oracle.hadoop.exttab.ExternalTable \

[-conf config file]l... \

[-D property=value]... \

-createTable [--noexecute [--output filename.sqgl]]
| -publish [--noexecute]
| -listlocations [--details]
| -getDDL

2-6 Oracle Big Data Connectors User's Guide

Using the ExternalTable Command-Line Tool

You can either create the 0SCH_HOME environment variable or replace OSCH_HOME in
the command syntax with the full path to the installation directory for Oracle SQL
Connector for HDFS. On Oracle Big Data Appliance, this directory is:

/opt/oracle/orahdfs-version

For example, you might run the ExternalTable command-line tool with a command
like this:

hadoop jar /opt/oracle/orahdfs-2.3.0/jlib/orahdfs.jar \
oracle.hadoop.exttab.ExternalTable \

Options

-conf config_file

Identifies the name of an XML configuration file containing properties needed by the
command being executed. See "Configuring Oracle SQL Connector for HDFS" on
page 2-21.

-D property=value
Assigns a value to a specific property.

-createTable [--noexecute [--output filenamel]]

Creates an external table definition and publishes the data URIs to the location files of
the external table. The output report shows the DDL used to create the external table
and lists the contents of the location files.

Oracle SQL Connector for HDFS also checks the database to ensure that the required
database directories exist and that you have the necessary permissions.

Use the --noexecute option to see the execution plan of the command. The operation
is not executed, but the report includes the details of the execution plan and any
errors. The --output option writes the table DDL from the -createTable command to
a file.

Oracle recommends that you first execute a -createTable command with
--noexecute.

-publish [--noexecute]
Publishes the data URIs to the location files of an existing external table. Use this
option after adding new data files, so that the existing external table can access them.

Use the --noexecute option to see the execution plan of the command. The operation
is not executed, but the report shows the planned SQL ALTER TABLE command and
location files. The report also shows any errors.

Oracle recommends that you first execute a -publish command with --noexecute.
See "Publishing the HDFS Data Paths" on page 2-16.
-listLocations [--details]

Shows the location file content as text. With the --details option, this command
provides a detailed listing. See "What Are Location Files?" on page 2-20.

-getDDL
Prints the table definition of an existing external table. See "Describing External Tables"
on page 2-18.

Oracle SQL Connector for Hadoop Distributed File System 2-7

Creating External Tables

See Also: "Syntax Conventions" on page xii

Creating External Tables

You can create external tables automatically using the ExternalTable tool provided in
Oracle SQL Connector for HDFS.

Creating External Tables with the ExternalTable Tool

To create an external table using the ExternalTable tool, follow the instructions for
your data source:

» Creating External Tables from Data Pump Format Files
s Creating External Tables from Hive Tables
» Creating External Tables from Delimited Text Files

When the ExternalTable -createTable command finishes executing, the external
table is ready for use. ExternalTable also manages the location files for the external
table. See "Location File Management" on page 2-20.

To create external tables manually, follow the instructions in "Creating External Tables
in SQL" on page 2-16.

ExternalTable Syntax for -createTable
Use the following syntax to create an external table and populate its location files:

hadoop jar OSCH_HOME/jlib/orahdfs.jar oracle.hadoop.exttab.ExternalTable \

[-conf config file]l... \
[-D property=value]... \
-createTable [--noexecute]

See Also: "ExternalTable Command-Line Tool Syntax" on page 2-6

Creating External Tables from Data Pump Format Files

Oracle SQL Connector for HDFS supports only Data Pump files produced by Oracle
Loader for Hadoop, and does not support generic Data Pump files produced by Oracle
Utilities.

Oracle SQL Connector for HDFS creates the external table definition for Data Pump
files by using the metadata from the Data Pump file header. It uses the ORACLE_
LOADER access driver with the preprocessor access parameter. It also uses a special
access parameter named EXTERNAL VARIABLE DATA, which enables ORACLE_LOADER
to read the Data Pump format files generated by Oracle Loader for Hadoop.

Note: Oracle SQL Connector for HDFS requires a patch to Oracle
Database 11.2.0.2 before the connector can access Data Pump files
produced by Oracle Loader for Hadoop. To download this patch, go to
http://support.oracle.com and search for bug 14557588.

Release 11.2.0.3 and later releases do not require this patch.

Required Properties
These properties are required:

2-8 Oracle Big Data Connectors User's Guide

Creating External Tables

m oracle.hadoop.exttab.tableName

m oracle.hadoop.exttab.defaultDirectory

m oracle.hadoop.exttab.dataPaths

m oracle.hadoop.exttab.sourceType=datapump
s oracle.hadoop.connection.url

s oracle.hadoop.connection.user

See "Configuring Oracle SQL Connector for HDFS" on page 2-21 for descriptions of the
properties used for this data source.

Optional Properties
This property is optional:

s oracle.hadoop.exttab.logDirectory

Defining Properties in XML Files for Data Pump Format Files

Example 2-2 is an XML template containing the properties that describe a Data Pump

file. To use the template, cut and paste it into a text file, enter the appropriate values to
describe your Data Pump file, and delete any optional properties that you do not need.
For more information about using XML templates, see "Creating a Configuration File"

on page 2-21.

Example 2-2 XML Template with Properties for a Data Pump Format File

<?xml version="1.0"?>
<!-- Required Properties -->

<configuration>

<property>
<name>oracle.hadoop.exttab.tableName</name>
<value>value</value>

</property>

<property>
<name>oracle.hadoop.exttab.defaultDirectory</name>
<value>value</value>

</property>

<property>
<name>oracle.hadoop.exttab.dataPaths</name>
<value>value</value>

</property>

<property>
<name>oracle.hadoop.exttab.sourceType</name>
<value>datapump</value>

</property>

<property>
<name>oracle.hadoop.connection.url</name>
<value>value</value>

</property>

<property>
<name>oracle.hadoop.connection.user</name>
<value>value</value>

</property>

<!-- Optional Properties -->

Oracle SQL Connector for Hadoop Distributed File System 2-9

Creating External Tables

<property>
<name>oracle.hadoop.exttab.logDirectory</name>
<value>value</value>
</property>
</configuration>

Example
Example 2-3 creates an external table named SALES_DP_XTAB to read Data Pump files.

Example 2-3 Defining an External Table for Data Pump Format Files

Log in as the operating system user that Oracle Database runs under (typically the
oracle user), and create a file-system directory. For Oracle RAC, you must create a
cluster-wide directory on a distributed file system.

S mkdir /data/sales_dp_dir

Create a database directory and grant read and write access to it:

$ sqlplus / as sysdba
SQL> CREATE OR REPLACE DIRECTORY sales_dp_dir AS '/data/sales_dp_dir'
SQL> GRANT READ, WRITE ON DIRECTORY sales_dp_dir TO scott;

Create the external table:

hadoop jar OSCH_HOME/jlib/orahdfs.jar \

oracle.hadoop.exttab.ExternalTable \

-D oracle.hadoop.exttab.tableName=SALES_DP_XTAB \

-D oracle.hadoop.exttab.sourceType=datapump \

-D oracle.hadoop.exttab.dataPaths=hdfs:///user/scott/olh_sales_dpoutput/ \

-D oracle.hadoop.exttab.defaultDirectory=SALES_DP_DIR \

-D oracle.hadoop.connection.url=jdbc:oracle:thin:@//myhost:1521/myservicename \
-D oracle.hadoop.connection.user=SCOTT \

-createTable

Creating External Tables from Hive Tables

Oracle SQL Connector for HDFS creates the external table definition from a Hive table
by contacting the Hive metastore client to retrieve information about the table columns
and the location of the table data. In addition, the Hive table data paths are published
to the location files of the Oracle external table.

To read Hive table metadata, Oracle SQL Connector for HDFS requires that the Hive
JAR files are included in the HADOOP_CLASSPATH variable. Oracle SQL Connector for
HDFS must be installed and running on a computer with a working Hive client.

Ensure that you add the Hive configuration directory to the HADOOP_CLASSPATH
environment variable. You must have a correctly functioning Hive client.

For Hive managed tables, the data paths come from the warehouse directory.

For Hive external tables, the data paths from an external location in HDFS are
published to the location files of the Oracle external table. Hive external tables can
have no data, because Hive does not check if the external location is defined when the
table is created. If the Hive table is empty, then one location file is published with just a
header and no data URIs.

The Oracle external table is not a "live" Hive table. When changes are made to a Hive
table, you must use the ExternalTable tool to either republish the data or create a new
external table.

2-10 Oracle Big Data Connectors User's Guide

Creating External Tables

Hive Table Requirements

Oracle SQL Connector for HDFS supports non-partitioned Hive tables that are defined
using ROW FORMAT DELIMITED and FILE FORMAT TEXTFILE clauses. Both Hive-managed
tables and Hive external tables are supported.

Hive tables can be either bucketed or not bucketed. All primitive types from Hive
0.10.0 are supported.

Data Type Mappings

Table 2-1 shows the default data-type mappings between Hive and Oracle. To change
the data type of the target columns created in the Oracle external table, set the
oracle.hadoop.exttab.hive.columnType. * properties listed under "Optional
Properties" on page 2-11..

Table 2-1 Hive Data Type Mappings

Data Type of Source Hive Column Default Data Type of Target Oracle Column

INT, BIGINT, SMALLINT, TINYINT INTEGER

DECIMAL, DOUBLE, FLOAT NUMBER

BOOLEAN VARCHAR2 (5)

STRING VARCHAR?2 (4000)

TIMESTAMP TIMESTAMP with format mask

YYYY-MM-DD HH24:MI:SS.FF

Required Properties
These properties are required for Hive table sources:

m oracle.hadoop.exttab.tableName

m oracle.hadoop.exttab.defaultDirectory
m oracle.hadoop.exttab.sourceType=hive

m oracle.hadoop.exttab.hive.tableName

m oracle.hadoop.exttab.hive.databaseName
s oracle.hadoop.connection.url

s oracle.hadoop.connection.user

See "Configuring Oracle SQL Connector for HDFS" on page 2-21 for descriptions of the
properties used for this data source.

Optional Properties
These properties are optional for Hive table sources:

m oracle.hadoop.exttab.hive.columnType. *

m oracle.hadoop.exttab.locationFileCount

m oracle.hadoop.exttab.colMap.columnLength

m oracle.hadoop.exttab.colMap.column_name.columnLength
m oracle.hadoop.exttab.colMap.columnType

m oracle.hadoop.exttab.colMap.column_name.columnType

m oracle.hadoop.exttab.colMap.dateMask

Oracle SQL Connector for Hadoop Distributed File System 2-11

Creating External Tables

m oracle
m oracle
m oracle
m oracle
m oracle
m oracle

m oracle

.hadoop.
.hadoop.
.hadoop.
.hadoop.
.hadoop.
.hadoop.
.hadoop.

exttab
exttab
exttab
exttab
exttab
exttab

exttab

.colMap.
.colMap.
.colMap.
.colMap.
.colMap.
.colMap.

.colMap.

column_name.dateMask
fieldLength
column_name.fieldLength
timestampMask
column_name. timestampMask
timestampTZMask

column_name. timestampTZMask

Defining Properties in XML Files for Hive Tables

Example 2—4 is an XML template containing the properties that describe a Hive table.
To use the template, cut and paste it into a text file, enter the appropriate values to
describe your Hive table, and delete any optional properties that you do not need. For
more information about using XML templates, see "Creating a Configuration File" on

page 2-21.

Example 2-4 XML Template with Properties for a Hive Table

<?xml version="1.0"?>

<!-- Required Properties -->

<configuration>
<property>
<name>oracle.hadoop.exttab.tableName</name>
<value>value</value>
</property>
<property>
<name>oracle.hadoop.exttab.defaultDirectory</name>
<value>value</value>
</property>
<property>
<name>oracle.hadoop.exttab.sourceType</name>
<value>hive</value>
</property>
<property>
<name>oracle.hadoop.exttab.hive.tableName</name>
<value>value</value>
</property>
<property>
<name>oracle.hadoop.exttab.hive.databaseName</name>
<value>value</value>
</property>
<property>
<name>oracle.hadoop.connection.url</name>
<value>value</value>
</property>
<property>
<name>oracle.hadoop.connection.user</name>
<value>value</value>
</property>

<!-- Optional Properties -->

<property>
<name>oracle.hadoop.exttab.locationFileCount</name>

2-12 Oracle Big Data Connectors User's Guide

Creating External Tables

<value>value</value>
</property>
<property>
<name>oracle.hadoop.exttab.hive.columnType . TYPE</name>
<value>value</value>
</property>
</configuration>

Example

Example 2-5 creates an external table named SALES_HIVE_XTAB to read data from a
Hive table. The example defines all the properties on the command line instead of in
an XML file.

Example 2-5 Defining an External Table for a Hive Table

Log in as the operating system user that Oracle Database runs under (typically the
oracle user), and create a file-system directory:

$ mkdir /data/sales_hive_dir

Create a database directory and grant read and write access to it:

$ sglplus / as sysdba
SQL> CREATE OR REPLACE DIRECTORY sales_hive_dir AS '/data/sales_hive_dir'
SQL> GRANT READ, WRITE ON DIRECTORY sales_hive_dir TO scott;

Create the external table:

hadoop jar OSCH_HOME/jlib/orahdfs.jar \
oracle.hadoop.exttab.ExternalTable \

-D oracle.hadoop.exttab.tableName=SALES_HIVE_XTAB \

-D oracle.hadoop.exttab.sourceType=hive \

-D oracle.hadoop.exttab.locationFileCount=2 \

-D oracle.hadoop.exttab.hive.tableName=sales_country_us \
-D oracle.hadoop.exttab.hive.databaseName=salesdb \

-D oracle.hadoop.exttab.defaultDirectory=SALES_HIVE_DIR \
-D oracle.hadoop.connection.url=jdbc:oracle:thin:@//myhost:1521/myservicename \
-D oracle.hadoop.connection.user=SCOTT \

-createTable

Creating External Tables from Delimited Text Files

Oracle SQL Connector for HDFS creates the external table definition for delimited text
files using configuration properties that specify the number of columns, the text
delimiter, and optionally, the external table column names. By default, all text columns
in the external table are VARCHAR?2. If column names are not provided, they default to
C1 to Cn, where n is the number of columns specified by the
oracle.hadoop.exttab.columnCount property.

Data Type Mappings

All text data sources are automatically mapped to VARCHAR2 (4000) . To change the data
type of the target columns created in the Oracle external table, set the
oracle.hadoop.exttab.colMap.* properties listed under "Optional Properties” on
page 2-14.

Required Properties
These properties are required for delimited text sources:

Oracle SQL Connector for Hadoop Distributed File System 2-13

Creating External Tables

m oracle.hadoop.exttab.tableName

m oracle.hadoop.exttab.defaultDirectory

m oracle.hadoop.exttab.dataPaths

m oracle.hadoop.exttab.columnCount or oracle.hadoop.exttab.columnNames
s oracle.hadoop.connection.url

s oracle.hadoop.connection.user

See "Configuring Oracle SQL Connector for HDFS" on page 2-21 for descriptions of the
properties used for this data source.

Optional Properties
These properties are optional for delimited text sources:

m oracle.hadoop.exttab.recordDelimiter

m oracle.hadoop.exttab.fieldTerminator

m oracle.hadoop.exttab.initialFieldEncloser

m oracle.hadoop.exttab.trailingFieldEncloser

m oracle.hadoop.exttab.locationFileCount

m oracle.hadoop.exttab.colMap.columnLength

m oracle.hadoop.exttab.colMap.column_name.columnLength
m oracle.hadoop.exttab.colMap.columnType

m oracle.hadoop.exttab.colMap.column_name.columnType

m oracle.hadoop.exttab.colMap.dateMask

m oracle.hadoop.exttab.colMap.column_name.dateMask

s oracle.hadoop.exttab.colMap.fieldLength

m oracle.hadoop.exttab.colMap.column_name.fieldLength
m oracle.hadoop.exttab.colMap.timestampMask

m oracle.hadoop.exttab.colMap.column_name.timestampMask
m oracle.hadoop.exttab.colMap.timestampTZMask

m oracle.hadoop.exttab.colMap.column_name.timestampTZMask

Defining Properties in XML Files for Delimited Text Files

Example 2-6 is an XML template containing all the properties that describe a delimited
text file. To use the template, cut and paste it into a text file, enter the appropriate
values to describe your data files, and delete any optional properties that you do not
need. For more information about using XML templates, see "Creating a Configuration
File" on page 2-21.

Example 2-6 XML Template with Properties for a Delimited Text File
<?xml version="1.0"?>
<!-- Required Properties -->

<configuration>
<property>

2-14 Oracle Big Data Connectors User's Guide

Creating External Tables

<name>oracle.hadoop.exttab.

<value>value</value>
</property>
<property>

<name>oracle.hadoop.exttab.

<value>value</value>
</property>
<property>

<name>oracle.hadoop.exttab.

<value>value</value>
</property>

<!-- Use either columnCount or

<property>

<name>oracle.hadoop.exttab.

<value>value</value>
</property>
<property>

<name>oracle.hadoop.exttab.

<value>value</value>
</property>

<property>

tableName</name>

defaultDirectory</name>

dataPaths</name>

columnNames -->

columnCount</name>

columnNames</name>

<name>oracle.hadoop.connection.url</name>

<value>value</value>
</property>
<property>

<name>oracle.hadoop.connection.user</name>

<value>value</value>
</property>

<!-- Optional Properties -->

<property>

<name>oracle.hadoop.exttab.

<value>value</value>
</property>
<property>

<name>oracle.hadoop.exttab.

<value>value</value>
</property>
<property>

<name>oracle.hadoop.exttab.

<value>value</value>
</property>
<property>

<name>oracle.hadoop.exttab.

<value>value</value>
</property>
<property>

<name>oracle.hadoop.exttab.

<value>value</value>
</property>
<property>

<name>oracle.hadoop.exttab.

<value>value</value>
</property>
</configuration>

Oracle SQL Connector for Hadoop Distributed File System 2-15

colMap. TYPE</name>

recordDelimiter</name>

fieldTerminator</name>

initialFieldEncloser</name>

trailingFieldEncloser</name>

locationFileCount</name>

Publishing the HDFS Data Paths

Example
Example 2-7 creates an external table named SALES_DT_XTAB from delimited text files.

Example 2-7 Defining an External Table for Delimited Text Files

Log in as the operating system user that Oracle Database runs under (typically the
oracle user), and create a file-system directory:

$ mkdir /data/sales_dt_dir

Create a database directory and grant read and write access to it:

$ sglplus / as sysdba
SQL> CREATE OR REPLACE DIRECTORY sales_dt_dir AS '/data/sales_dt_dir'
SQL> GRANT READ, WRITE ON DIRECTORY sales_dt_dir TO scott;

Create the external table:

hadoop jar OSCH_HOME/jlib/orahdfs.jar \

oracle.hadoop.exttab.ExternalTable \

-D oracle.hadoop.exttab.tableName=SALES_DT_ XTAB \

-D oracle.hadoop.exttab.locationFileCount=2 \

-D oracle.hadoop.exttab.dataPaths="hdfs:///user/scott/olh_sales/*.dat" \

-D oracle.hadoop.exttab.columnCount=10 \

-D oracle.hadoop.exttab.defaultDirectory=SALES_DT DIR \

-D oracle.hadoop.connection.url=jdbc:oracle:thin:@//myhost:1521/myservicename \
-D oracle.hadoop.connection.user=SCOTT \

-createTable

Creating External Tables in SQL

You can create an external table manually for Oracle SQL Connector for HDFS. For
example, the following procedure enables you to use external table syntax that is not
exposed by the ExternalTable -createTable command.

Additional syntax might not be supported for Data Pump format files.

To create an external table manually:

1. Use the -createTable --noexecute command to generate the external table DDL.
2. Make whatever changes are needed to the DDL.

3. Run the DDL from Step 2 to create the table definition in the Oracle database.

4

Use the ExternalTable -publish command to publish the data URIs to the
location files of the external table.

Publishing the HDFS Data Paths

The -createTable command creates the metadata in Oracle Database and populates
the location files with the Universal Resource Identifiers (URIs) of the data files in
HDFS. However, you might publish the URIs as a separate step from creating the
external table in cases like these:

= You want to publish new data into an already existing external table.
= You created the external table manually instead of using the ExternalTable tool.

In both cases, you can use ExternalTable with the -publish command to populate the
external table location files with the URIs of the data files in HDFS. See "Location File
Management" on page 2-20.

2-16 Oracle Big Data Connectors User's Guide

Listing Location File Metadata and Contents

ExternalTable Syntax for Publish

hadoop jar OSCH_HOME/jlib/orahdfs.jar \
oracle.hadoop.exttab.ExternalTable \

[-conf config file]l... \
[-D property=value]... \
-publish [--noexecute]

See Also: "ExternalTable Command-Line Tool Syntax" on page 2-6

ExternalTable Command-Line Tool Example

Example 2-8 sets HADOOP_CLASSPATH and publishes the HDFS data paths to the
external table created in Example 2-3. See "Configuring Your System for Oracle SQL
Connector for HDFS" on page 2-5 for more information about setting this environment
variable.

Example 2-8 Publishing HDFS Data Paths to an External Table for Data Pump Format
Files

This example uses the Bash shell.

$ export HADOOP_CLASSPATH="OSCH_HOME/jlib/*"

$ hadoop jar OSCH_HOME/jlib/orahdfs.jar oracle.hadoop.exttab.ExternalTable \

-D oracle.hadoop.exttab.tableName=SALES_DP_XTAB \

-D oracle.hadoop.exttab.sourceType=datapump \

-D oracle.hadoop.exttab.dataPaths=hdfs:/user/scott/data/ \

-D oracle.hadoop.connection.url=jdbc:oracle:thin:@//myhost:1521/myservicename \
-D oracle.hadoop.exttab.connection.user=scott -publish

In this example:

= OSCH_HOME is the full path to the Oracle SQL Connector for HDFS installation
directory.

= SALES_DP_XTAB is the external table created in Example 2-3.
= hdfs:/user/scott/data/ is the location of the HDFS data.

= @myhost:1521 is the database connection string.

Listing Location File Metadata and Contents

The -listLocations command is a debugging and diagnostic utility that enables you
to see the location file metadata and contents. You can use this command to verify the
integrity of the location files of an Oracle external table.

These properties are required to use this command:
m oracle.hadoop.exttab.tableName

s The JDBC connection properties; see "Connection Properties” on page 2-30.

ExternalTable Syntax for -listLocations

hadoop jar OSCH_HOME/jlib/orahdfs.jar \
oracle.hadoop.exttab.ExternalTable \
[-conf config file]l... \

[-D property=value]... \

-listLocations [--details]

See Also: "ExternalTable Command-Line Tool Syntax" on page 2-6

Oracle SQL Connector for Hadoop Distributed File System 2-17

Describing External Tables

Describing External Tables

The -getDDL command is a debugging and diagnostic utility that prints the definition
of an existing external table. This command follows the security model of the PL/SQL
DBMS_METADATA package, which enables non-privileged users to see the metadata for
their own objects.

These properties are required to use this command:
m oracle.hadoop.exttab.tableName

s The JDBC connection properties; see "Connection Properties" on page 2-30.

ExternalTable Syntax for -getDDL

hadoop jar OSCH_HOME/jlib/orahdfs.jar \
oracle.hadoop.exttab.ExternalTable \

[-conf config file]l... \
[-D property=value]... \
-getDDL

See Also: "ExternalTable Command-Line Tool Syntax" on page 2-6

More About External Tables Generated by the ExternalTable Tool

Because external tables are used to access data, all of the features and limitations of
external tables apply. Queries are executed in parallel with automatic load balancing.
However, update, insert, and delete operations are not allowed and indexes cannot be
created on external tables. When an external table is accessed, a full table scan is
always performed.

Oracle SQL Connector for HDFS uses the ORACLE_LOADER access driver. The hdfs_
stream preprocessor script (provided with Oracle SQL Connector for HDFS) modifies
the input data to a format that ORACLE_LOADER can process.

See Also:

m Oracle Database Administrator’s Guide for information about
external tables

» Oracle Database Utilities for more information about external
tables, performance hints, and restrictions when you are using the
ORACLE_LOADER access driver.

About Configurable Column Mappings

Oracle SQL Connector for HDFS uses default data type mappings to create columns in
an Oracle external table with the appropriate data types for the Hive and text sources.
You can override these defaults by setting various configuration properties, for either
all columns or a specific column.

For example, a field in a text file might contain a timestamp. By default, the field is
mapped to a VARCHAR2 column. However, you can specify a TIMESTAMP column and
provide a datetime mask to cast the values correctly into the TIMESTAMP data type. The
TIMESTAMP data type supports time-based queries and analysis that are unavailable
when the data is presented as text.

2-18 Oracle Big Data Connectors User's Guide

More About External Tables Generated by the ExternalTable Tool

Default Column Mappings

Text sources are mapped to VARCHAR2 columns, and Hive columns are mapped to
columns with the closest equivalent Oracle data type. Table 2-1 shows the default

mappings.

All Column Overrides

The following properties apply to all columns in the external table. For Hive sources,
these property settings override the oracle.hadoop.exttab.hive.* property settings.

m oracle.hadoop.exttab.colMap.columnLength
m oracle.hadoop.exttab.colMap.columnType

m oracle.hadoop.exttab.colMap.dateMask

s oracle.hadoop.exttab.colMap.fieldLength

m oracle.hadoop.exttab.colMap.timestampMask

m oracle.hadoop.exttab.colMap.timestampTZMask

One Column Overrides

The following properties apply to only one column, whose name is the column_name
part of the property name. These property settings override all other settings.

m oracle.hadoop.exttab.colMap.column_name.columnLength
m oracle.hadoop.exttab.colMap.column_name.columnType

m oracle.hadoop.exttab.colMap.column_name.dateMask

m oracle.hadoop.exttab.colMap.column_name.fieldLength

m oracle.hadoop.exttab.colMap.column_name.timestampMask

m oracle.hadoop.exttab.colMap.column_name.timestampTZMask

Mapping Override Examples

The following properties create an external table in which all columns are the default
VARCHAR2 data type:

oracle.hadoop.exttab.tableName=MOVIE_FACT EXT_TAB_TXT
oracle.hadoop.exttab.columnNames=CUST_ID,MOVIE_ID,GENRE_ID, TIME_
ID, RECOMMENDED, ACTIVITY_ ID,RATING, SALES

In this example, the following properties are set to override the data type of several
columns:

oracle.hadoop.exttab.colMap.TIME_ID.columnType=TIMESTAMP
oracle.hadoop.exttab.colMap.RECOMMENDED. columnType=NUMBER
oracle.hadoop.exttab.colMap.ACTIVITY_ID.columnType=NUMBER
oracle.hadoop.exttab.colMap.RATING. columnType=NUMBER
oracle.hadoop.exttab.colMap.SALES. columnType=NUMBER

Oracle SQL Connector for HDFS creates an external table with the specified data types:

SQL> DESCRIBE movie_facts_ext

Name Null? Type

CUST_ID VARCHAR2 (4000)
MOVIE_ID VARCHAR2 (4000)
GENRE_ID VARCHAR2 (4000)

Oracle SQL Connector for Hadoop Distributed File System 2-19

More About External Tables Generated by the ExternalTable Tool

TIME_ID TIMESTAMP (9)
RECOMMENDED NUMBER
ACTIVITY_ID NUMBER
RATINGS NUMBER
SALES NUMBER

The next example adds the following property settings to change the length of the
VARCHAR2 columns:

oracle.hadoop.exttab.colMap.CUST_ID.columnLength=12
oracle.hadoop.exttab.colMap.MOVIE_ID.columnLength=12
oracle.hadoop.exttab.colMap.GENRE_ID.columnLength=12
All columns now have custom data types:

SQL> DESCRIBE movie_facts_ext

Name Null? Type

CUST_ID VARCHAR2 (12)
MOVIE_ID VARCHAR2 (12)
GENRE_ID VARCHAR2 (12)
TIME_ID TIMESTAMP (9)
RECOMMENDED NUMBER
ACTIVITY_ID NUMBER
RATINGS NUMBER

SALES NUMBER

What Are Location Files?

A location file is a file specified in the location clause of the external table. Oracle SQL
Connector for HDFS creates location files that contain only the Universal Resource
Identifiers (URIs) of the data files. A data file contains the data stored in HDFS.

Enabling Parallel Processing

To enable parallel processing with external tables, you must specify multiple files in
the location clause of the external table. The number of files, also known as the degree
of parallelism, determines the number of child processes started by the external table
during a table read. Ideally, the degree of parallelism is no larger than the number of
data files, to avoid idle child processes.

Location File Management

The Oracle SQL Connector for HDFS command-line tool, ExternalTable, creates an
external table and publishes the HDFS URI information to location files. The external
table location files are stored in the directory specified by the
oracle.hadoop.exttab.defaultDirectory property. For an Oracle RAC database, this
directory must reside on a distributed file system that is accessible to each database
server.

ExternalTable manages the location files of the external table, which involves the
following operations:

= Generating new location files in the database directory after checking for name
conflicts

= Deleting existing location files in the database directory as necessary
s Publishing data URIs to new location files

= Altering the LOCATION clause of the external table to match the new location files

2-20 Oracle Big Data Connectors User's Guide

Configuring Oracle SQL Connector for HDFS

Location file management for the supported data sources is described in the following
topics.

Data Pump File Format

The ORACLE_LOADER access driver is required to access Data Pump files. The driver
requires that each location file corresponds to a single Data Pump file in HDFS. Empty
location files are not allowed, and so the number of location files in the external table
must exactly match the number of data files in HDFS.

Oracle SQL Connector for HDFS automatically takes over location file management
and ensures that the number of location files in the external table equals the number of
Data Pump files in HDFS.

Delimited Files in HDFS and Hive Tables

The ORACLE_LOADER access driver has no limitation on the number of location files.
Each location file can correspond to one or more data files in HDFS. The number of
location files for the external table is suggested by the
oracle.hadoop.exttab.locationFileCount configuration property.

See "Connection Properties" on page 2-30.

Location File Names

This is the format of a location file name:
osch-timestamp-number-n
In this syntax:

» timestamp has the format yyyyMMddhhmmss, for example, 20121017103941 for
October 17,2012, at 10:39:41.

= number is a random number used to prevent location file name conflicts among
different tables.

= nisanindex used to prevent name conflicts between location files for the same
table.

For example, 0sch-20121017103941-6807-1.

Configuring Oracle SQL Connector for HDFS

You can pass configuration properties to the ExternalTable tool on the command line
with the -D option, or you can create a configuration file and pass it on the command
line with the -conf option. These options must precede the command to be executed
(-createTable, -publish, -listLocations, or -getDDL).

For example, this command uses a configuration file named example.xml:

hadoop jar OSCH_HOME/jlib/orahdfs.jar \
oracle.hadoop.exttab.ExternalTable \
-conf /home/oracle/example.xml \
-createTable

See "ExternalTable Command-Line Tool Syntax" on page 2-6.

Creating a Configuration File

A configuration file is an XML document with a very simple structure as follows:

<?xml version="1.0"?>

Oracle SQL Connector for Hadoop Distributed File System 2-21

Configuring Oracle SQL Connector for HDFS

<configuration>
<property>
<name>property</name>
<value>value</value>
</property>

</configuration>

Example 2-9 shows a configuration file. See "Oracle SQL Connector for HDFS
Configuration Property Reference" on page 2-22 for descriptions of these properties.

Example 2-9 Configuration File for Oracle SQL Connector for HDFS

<?xml version="1.0"?>
<configuration>
<property>
<name>oracle.hadoop.exttab. tableName</name>
<value>SH.SALES_EXT DIR</value>
</property>
<property>
<name>oracle.hadoop.exttab.dataPaths</name>
<value>/data/sl/*.csv,/data/s2/*.csv</value>
</property>
<property>
<name>oracle.hadoop.exttab.dataCompressionCodec</name>
<value>org.apache.hadoop.io.compress.DefaultCodec</value>
</property>
<property>
<name>oracle.hadoop.connection.url</name>
<value>jdbc:oracle:thin:@//myhost:1521/myservicename</value>
</property>
<property>
<name>oracle.hadoop.connection.user</name>
<value>SH</value>
</property>
</configuration>

Oracle SQL Connector for HDFS Configuration Property Reference

The following is a complete list of the configuration properties used by the
ExternalTable command-line tool. The properties are organized into these categories:

= General Properties

= Connection Properties

General Properties

oracle.hadoop.exttab.colMap.columnLength
Specifies the length of all external table columns of type CHAR, VARCHAR2, NCHAR,
NVARCHAR2, and RaW. Optional.

Default Value: The maximum length allowed by the column type

For Oracle Database 12c, Oracle SQL Connector for HDFS sets the length of VARCHAR?2,
NVARCHAR2, and RAW columns depending on whether the database MAX_STRING_SIZE
option is set to STANDARD or EXTENDED.

Valid values: Integer

2-22 Oracle Big Data Connectors User's Guide

Configuring Oracle SQL Connector for HDFS

oracle.hadoop.exttab.colMap.columnType
Specifies the data type mapping of all columns for Hive and text sources. Optional.

You can override this setting for specific columns by setting
oracle.hadoop.exttab.colMap.column_name.columnType.

Default value: VARCHAR? for text; see Table 2-1 for Hive
Valid values: The following Oracle data types are supported:

VARCHAR2

NVARCHAR2

CHAR

NCHAR

CLOB

NCLOB

NUMBER

INTEGER

FLOAT

BINARY_DOUBLE

BINARY_FLOAT

RAW*

DATE

TIMESTAMP

TIMESTAMP WITH TIME ZONE
TIMESTAMP WITH LOCAL TIME ZONE
INTERVAL DAY TO SECOND
INTERVAL YEAR TO MONTH

* RAW binary data in delimited text files must be encoded in hexadecimal.

oracle.hadoop.exttab.colMap.dateMask

Specifies the format mask used in the date_format_spec clause of the external table for
all DATE columns. This clause indicates that a character data field contains a date in
the specified format.

Default value: The default globalization format mask, which is set by the NL.S_DATE_
FORMAT database parameter

Valid values: A datetime format model as described in the Oracle Database SQL
Language Reference. However, it cannot contain quotation marks.

oracle.hadoop.exttab.colMap.fieldLength

Sets the character buffer length used by the ORACLE_LOADER access driver for all
CLOB columns. The value is used in the field_list clause of the external table definition,
which identifies the fields in the data file and their data types.

Default value: 4000 bytes

Valid values: Integer

oracle.hadoop.exttab.colMap.timestampMask

Specifies the format mask used in the date_format_spec clause of the external table for

all TIMESTAMP and TIMESTAMP WITH LOCAL TIME ZONE columns. This clause indicates
that a character data field contains a timestamp in the specified format.

Default value: The default globalization format mask, which is set by the NLS_
TIMESTAMP_FORVMAT database parameter

Valid values: A datetime format model as described in the Oracle Database SQL
Language Reference. However, it cannot contain quotation marks.

Oracle SQL Connector for Hadoop Distributed File System 2-23

Configuring Oracle SQL Connector for HDFS

oracle.hadoop.exttab.colMap.timestampTZMask

Specifies the format mask used in the date_format_spec clause of the external table for
all TIMESTAMP WITH TIME ZONE columns. This clause indicates that a character data
field contains a timestamp in the specified format.

Default value: The default globalization format mask, which is set by the NLS_
TIMESTAMP_TZ_FORMAT database parameter

Valid values: A datetime format model as described in the Oracle Database SQL

Language Reference. However, it cannot contain quotation marks.

oracle.hadoop.exttab.colMap.column_name.columnLength
Specifies the length of all external table columns of type CHAR, VARCHAR2, NCHAR,
NVARCHAR2, and RaW. Optional.

Default Value: The value of oracle.hadoop.exttab.colMap.columnLength; if that
property is not set, then the maximum length allowed by the data type

Valid values: Integer
oracle.hadoop.exttab.colMap.column_name.columnType
Overrides the data type mapping for column_name. Optional.

The column_name is case-sensitive. It must exactly match the name of a column in a
Hive table or a column listed in oracle.hadoop.exttab.columnNames.

Default value: The value of oracle.hadoop.exttab.colMap.columnType; if that
property is not set, then the default data type identified in Table 2-1

Valid values: See oracle.hadoop.exttab.colMap.columnType
oracle.hadoop.exttab.colMap.column_name.dateMask
Overrides the format mask for column_name. Optional.

The column_name is case-sensitive. It must exactly match the name of a column in a
Hive table or a column listed in oracle.hadoop.exttab.columnNames.

Default value: The value of oracle.hadoop.exttab.colMap.dateMask.
Valid values: A datetime format model as described in the Oracle Database SQL

Language Reference. However, it cannot contain quotation marks.

oracle.hadoop.exttab.colMap.column_name.fieldLength

Overrides the character buffer length used by the ORACLE_LOADER access driver for
column_name. This property is especially useful for CLOB and extended data type
columns. Optional.

The column_name is case-sensitive. It must exactly match the name of a column in a
Hive table or a column listed in oracle.hadoop.exttab.columnNames.

Default value: Oracle SQL Connector for HDFS sets the default field lengths as shown
in Table 2-2.

Table 2-2 Field Length Calculations

Data Type of Target Column Field Length

VARCHAR2, NVARCHAR2, CHAR, Value of oracle.hadoop.exttab.colMap.column_
NCHAR name . columnLength

RAW 2 * columnLength property

CLOB, NCLOB Value of oracle.hadoop.exttab.colMap.fieldLength
All other types 255 (default size for external tables)

2-24 Oracle Big Data Connectors User's Guide

Configuring Oracle SQL Connector for HDFS

Valid values: Integer

oracle.hadoop.exttab.colMap.column_name.timestampMask
Overrides the format mask for column_name. Optional.

The column_name is case-sensitive. It must exactly match the name of a column in a
Hive table or a column listed in oracle.hadoop.exttab.columnNames.

Default value: The value of oracle.hadoop.exttab.colMap. timestampMask.

Valid values: A datetime format model as described in the Oracle Database SQL
Language Reference. However, it cannot contain quotation marks.

oracle.hadoop.exttab.colMap.column_name.timestampTZMask
Overrides the format mask for column_name. Optional.

The column_name is case-sensitive. It must exactly match the name of a column in a
Hive table or a column listed in oracle.hadoop.exttab.columnNames.

Default value: The value of oracle.hadoop.exttab.colMap. timestampTZMask.

Valid values: A datetime format model as described in the Oracle Database SQL
Language Reference. However, it cannot contain quotation marks.

oracle.hadoop.exttab.columnCount
The number of columns for the external table created from delimited text files. The
column names are set to C1, C2,... Cn, where n is value of this property.

This property is ignored if oracle.hadoop.exttab.columnNames is set.

The -createTable command uses this property when
oracle.hadoop.exttab.sourceType=text.

You must set either this property or oracle.hadoop.exttab.columnNames when
creating an external table from delimited text files.

oracle.hadoop.exttab.columnNames

A comma-separated list of column names for an external table created from delimited
text files. If this property is not set, then the column names are set to C1, C2,... Cn,
where 7 is the value of the oracle.hadoop.exttab.columnCount property.

The column names are read as SQL identifiers: unquoted values are capitalized, and
double-quoted values stay exactly as entered.

The -createTable command uses this property when
oracle.hadoop.exttab.sourceType=text.

You must set either this property or oracle.hadoop.exttab.columnCount when
creating an external table from delimited text files.

oracle.hadoop.exttab.dataCompressionCodec
The name of the compression codec class used to decompress the data files. Specify
this property when the data files are compressed. Optional.

This property specifies the class name of the compression codec that implements the
org.apache.hadoop.1io.compress.CompressionCodec interface. This codec applies to
all data files.

Several standard codecs are available in Hadoop, including the following:
s bzip2: org.apache.hadoop.io.compress.Bzip2Codec
m gzip: org.apache.hadoop.io.compress.GzipCodec

Default value: None

Oracle SQL Connector for Hadoop Distributed File System 2-25

Configuring Oracle SQL Connector for HDFS

oracle.hadoop.exttab.dataPaths

A comma-separated list of fully qualified HDFS paths. This property enables you to
restrict the input by using special pattern-matching characters in the path
specification. See Table 2-3. This property is required for the -createTable and
-publish commands using Data Pump or delimited text files. The property is ignored
for Hive data sources.

For example, to select all files in /data/s2/, and only the CSV files in /data/s7/,
/data/s8/,and /data/s9/, enter this expression:

/data/s2/,/data/s[7-9]1/*.csv

The external table accesses the data contained in all listed files and all files in listed
directories. These files compose a single data set.

The data set can contain compressed files or uncompressed files, but not both.

Table 2-3 Pattern-Matching Characters

Character Description

? Matches any single character

Matches zero or more characters

[abc] Matches a single character from the character set {a, b, c}

[a-b] Matches a single character from the character range {a...b}. The character
a must be less than or equal to b.

[~a] Matches a single character that is not from character set or range {a}. The
carat (") must immediately follow the left bracket.

\c Removes any special meaning of character c. The backslash is the escape
character.

{ab\,cd} Matches a string from the string set {ab, cd}. Precede the comma with an
escape character (\) to remove the meaning of the comma as a path
separator.

{ab\,c{de\,fh}} Matches a string from the string set {ab, cde, cfh}. Precede the comma with
an escape character (\) to remove the meaning of the comma as a path
separator.

oracle.hadoop.exttab.dataPathFilter
The path filter class. This property is ignored for Hive data sources.

Oracle SQL Connector for HDFS uses a default filter to exclude hidden files, which
begin with a dot or an underscore. If you specify another path filter class using the this
property, then your filter acts in addition to the default filter. Thus, only visible files
accepted by your filter are considered.

oracle.hadoop.exttab.defaultDirectory
Specifies the default directory for the Oracle external table. This directory is used for
all input and output files that do not explicitly name a directory object.

Valid value: The name of an existing database directory

Unquoted names are changed to upper case. Double-quoted names are not changed;
use them when case-sensitivity is desired. Single-quoted names are not allowed for
default directory names.

The -createTable command requires this property.

2-26 Oracle Big Data Connectors User's Guide

Configuring Oracle SQL Connector for HDFS

oracle.hadoop.exttab.fieldTerminator
Specifies the field terminator for an external table when
oracle.hadoop.exttab.sourceType=text. Optional.

Default value: , (comma)
Valid values: A string in one of the following formats:

= One or more regular printable characters; it cannot start with \u. For example, \t
represents a tab.

= One or more encoded characters in the format \uHHHH, where HHHH is a big-endian
hexadecimal representation of the character in UTF-16. For example, \u0009
represents a tab. The hexadecimal digits are case insensitive.

Do not mix the two formats.

oracle.hadoop.exttab.hive.columnType.*

Maps a Hive data type to an Oracle data type. The property name identifies the Hive
data type, and its value is an Oracle data type. The target columns in the external table
are created with the Oracle data type indicated by this property.

When Hive TIMESTAMP column is mapped to an Oracle TIMESTAMP column, then the
format mask is YYYY-MM-DD H24:MI:SS.FF. When a Hive STRING column is mapped to
an Oracle TIMESTAMP column, then the NLS parameter settings for the database are
used by default. You can override these defaults by using either the
oracle.hadoop.exttab.colMap. timestampMask or

oracle.hadoop.exttab.colMap. timestampTzMask properties.

Default values: Table 2—4 lists the Hive column type properties and their default
values.

Valid values: See the valid values for oracle.hadoop.exttab.colMap.columnType.

Table 2-4 Hive Column Type Mapping Properties

Property Default Value
oracle.hadoop.exttab.hive.columnType.BIGINT INTEGER
oracle.hadoop.exttab.hive.columnType .BOOLEAN VARCHAR?2
oracle.hadoop.exttab.hive.columnType.DECIMAL NUMBER
oracle.hadoop.exttab.hive.columnType.DOUBLE NUMBER
oracle.hadoop.exttab.hive.columnType.FLOAT NUMBER
oracle.hadoop.exttab.hive.columnType.INT INTEGER
oracle.hadoop.exttab.hive.columnType.SMALLINT INTEGER
oracle.hadoop.exttab.hive.columnType.STRING VARCHAR2
oracle.hadoop.exttab.hive.columnType . TIMESTAMP TIMESTAMP
oracle.hadoop.exttab.hive.columnType.TINYINT INTEGER

oracle.hadoop.exttab.hive.databaseName
The name of a Hive database that contains the input data table.

The -createTable command requires this property when
oracle.hadoop.exttab.sourceType=hive.

oracle.hadoop.exttab.hive.tableName
The name of an existing Hive table.

Oracle SQL Connector for Hadoop Distributed File System 2-27

Configuring Oracle SQL Connector for HDFS

The -createTable command requires this property when
oracle.hadoop.exttab.sourceType=hive.

oracle.hadoop.exttab.initialFieldEncloser
Specifies the initial field encloser for an external table created from delimited text files.
Optional.

Default value: null; no enclosers are specified for the external table definition.

The -createTable command uses this property when
oracle.hadoop.exttab.sourceType=text.

Valid values: A string in one of the following formats:
= One or more regular printable characters; it cannot start with \u.

= One or more encoded characters in the format \uHHHH, where HHHH is a big-endian
hexadecimal representation of the character in UTF-16. The hexadecimal digits are
case insensitive.

Do not mix the two formats.

oracle.hadoop.exttab.locationFileCount
Specifies the desired number of location files for the external table. Applicable only to
non-Data-Pump files.

Default value: 4

This property is ignored if the data files are in Data Pump format. Otherwise, the
number of location files is the lesser of:

s The number of data files
» The value of this property
At least one location file is created.

See "Enabling Parallel Processing” on page 2-20 for more information about the
number of location files.

oracle.hadoop.exttab.logDirectory

Specifies a database directory where log files, bad files, and discard files are stored.
The file names are the default values used by external tables. For example, the name of
a log file is the table name followed by _%p.log.

This is an optional property for the -createTable command.

These are the default file name extensions:

= Log files: log

= Bad files: bad

s Discard files: dsc

Valid values: An existing Oracle directory object name.

Unquoted names are changed to uppercase. Quoted names are not changed. Table 2-5

provides examples of how values are transformed.

Table 2-5 Examples of Quoted and Unquoted Values

Specified Value Interpreted Value
my_log_dir:'sales_tab_%p.log ' MY_LOG_DIR/sales_tab_%p.log
'my_log_dir':'sales_tab_%p.log' my_log_dir/sales_tab_%p.log

2-28 Oracle Big Data Connectors User's Guide

Configuring Oracle SQL Connector for HDFS

Table 2-5 (Cont.) Examples of Quoted and Unquoted Values

Specified Value Interpreted Value

"my_log_dir":"sales_tab_%p.log" my_log_dir/sales_tab_%p.log

oracle.hadoop.exttab.preprocessorDirectory
Specifies the database directory for the preprocessor. The file-system directory must
contain the hdfs_stream script.

Default value: 0OSCH_BIN_PATH

The preprocessor directory is used in the PREPROCESSOR clause of the external table.

oracle.hadoop.exttab.recordDelimiter
Specifies the record delimiter for an external table created from delimited text files.
Optional.

Default value: \n

The -createTable command uses this property when
oracle.hadoop.exttab.sourceType=text.

Valid values: A string in one of the following formats:
= One or more regular printable characters; it cannot start with \u.

= One or more encoded characters in the format \u#HHH, where HHHH is a big-endian
hexadecimal representation of the character in UTF-16. The hexadecimal digits are
case insensitive.

Do not mix the two formats.

oracle.hadoop.exttab.sourceType
Specifies the type of source files. The -createTable and -publish operations require
the value of this property.

Default value: text

Valid values: datapump, hive, or text

oracle.hadoop.exttab.stringSizes

Indicates whether the lengths specified for character strings are bytes or characters.
This value is used in the STRING SIZES ARE IN clause of the external table. Use
characters when loading multibyte character sets. See Oracle Database Ultilities.

Default value: BYTES

Valid values: BYTES or CHARACTERS

oracle.hadoop.exttab.tableName
Schema-qualified name of the external table in this format:

schemaName.tableName
If you omit schemaName, then the schema name defaults to the connection user name.
Default value: none

Required property for all operations.

oracle.hadoop.exttab.trailingFieldEncloser
Specifies the trailing field encloser for an external table created from delimited text
files. Optional.

Oracle SQL Connector for Hadoop Distributed File System 2-29

Configuring Oracle SQL Connector for HDFS

Default value: null; defaults to the value of
oracle.hadoop.exttab.initialFieldEncloser

The -createTable command uses this property when
oracle.hadoop.exttab.sourceType=text.

Valid values: A string in one of the following formats:
= One or more regular printable characters; it cannot start with \u.

= One or more encoded characters in the format \uHHHH, where HHHH is a big-endian
hexadecimal representation of the character in UTF-16. The hexadecimal digits are
case insensitive.

Do not mix the two formats.

Connection Properties

oracle.hadoop.connection.url

Specifies the database connection string in the thin-style service name format:
jdbc:oracle:thin:@//host_name:port/service_name

If you are unsure of the service name, then enter this SQL command as a privileged
user:

SQL> show parameter service

If an Oracle wallet is configured as an external password store, then the property value

must start with the driver prefix jdbc:oracle:thin:@ and db_connect_string must
exactly match the credentials defined in the wallet.

This property takes precedence over all other connection properties.
Default value: Not defined

Valid values: A string

oracle.hadoop.connection.user

An Oracle database log-in name. The externalTable tool prompts for a password.
This property is required unless you are using Oracle wallet as an external password
store.

Default value: Not defined

Valid values: A string

oracle.hadoop.connection.tnsEntryName

Specifies a TNS entry name defined in the tnsnames.ora file.

This property is used with the oracle.hadoop.connection.tns_admin property.
Default value: Not defined

Valid values: A string

oracle.hadoop.connection.tns_admin

Specifies the directory that contains the tnsnames.ora file. Define this property to use
transparent network substrate (TNS) entry names in database connection strings.
When using TNSNames with the JDBC thin driver, you must set either this property or

the Java oracle.net.tns_admin property. When both are set, this property takes
precedence over oracle.net.tns_admin.

2-30 Oracle Big Data Connectors User's Guide

Performance Tips for Querying Data in HDFS

This property must be set when using Oracle Wallet as an external password store. See
oracle.hadoop.connection.wallet_location.

Default value: The value of the Java oracle.net. tns_admin system property

Valid values: A string

oracle.hadoop.connection.wallet_location
A file path to an Oracle wallet directory where the connection credential is stored.

Default value: Not defined

Valid values: A string

When using Oracle Wallet as an external password store, set these properties:

m oracle.hadoop.connection.wallet_location

m oracle.hadoop.connection.url or oracle.hadoop.connection. tnsEntryName

m oracle.hadoop.connection.tns_admin

Performance Tips for Querying Data in HDFS

Parallel processing is extremely important when you are working with large volumes
of data. When you use external tables, always enable parallel query with this SQL
command:

ALTER SESSION ENABLE PARALLEL QUERY;

Before loading the data into an Oracle database from the external files created by
Oracle SQL Connector for HDFS, enable parallel DDL:

ALTER SESSION ENABLE PARALLEL DDL;

Before inserting data into an existing database table, enable parallel DML with this
SQL command:

ALTER SESSION ENABLE PARALLEL DML;

Hints such as APPEND and PQ_DISTRIBUTE also improve performance when you are
inserting data.

Oracle SQL Connector for Hadoop Distributed File System 2-31

Performance Tips for Querying Data in HDFS

2-32 Oracle Big Data Connectors User's Guide

3

Oracle Loader for Hadoop

This chapter explains how to use Oracle Loader for Hadoop to copy data from Apache
Hadoop into tables in an Oracle database. It contains the following sections:

= What Is Oracle Loader for Hadoop?

= About the Modes of Operation

s Getting Started With Oracle Loader for Hadoop

s Creating the Target Table

s Creating a Job Configuration File

= About the Target Table Metadata

= About Input Formats

= Mapping Input Fields to Target Table Columns

= About Output Formats

= Running a Loader Job

= Handling Rejected Records

= Balancing Loads When Loading Data into Partitioned Tables
s Optimizing Communications Between Oracle Engineered Systems
s Oracle Loader for Hadoop Configuration Property Reference

s Third-Party Licenses for Bundled Software

What Is Oracle Loader for Hadoop?

Oracle Loader for Hadoop is an efficient and high-performance loader for fast
movement of data from a Hadoop cluster into a table in an Oracle database. It
prepartitions the data if necessary and transforms it into a database-ready format. It
can also sort records by primary key or user-specified columns before loading the data
or creating output files. Oracle Loader for Hadoop uses the parallel processing
framework of Hadoop to perform these preprocessing operations, which other loaders
typically perform on the database server as part of the load process. Offloading these
operations to Hadoop reduces the CPU requirements on the database server, thereby
lessening the performance impact on other database tasks.

Oracle Loader for Hadoop is a Java MapReduce application that balances the data
across reducers to help maximize performance. It works with a range of input data
formats that present the data as records with fields. It can read from sources that have

Oracle Loader for Hadoop 3-1

About the Modes of Operation

the data already in a record format (such as Avro files or Apache Hive tables), or it can
split the lines of a text file into fields.

You run Oracle Loader for Hadoop using the hadoop command-line utility. In the
command line, you provide configuration settings with the details of the job. You
typically provide these settings in a job configuration file.

If you have Java programming skills, you can extend the types of data that the loader
can handle by defining custom input formats. Then Oracle Loader for Hadoop uses
your code to extract the fields and records.

About the Modes of Operation
Oracle Loader for Hadoop operates in two modes:
= Online Database Mode
s Offline Database Mode

Online Database Mode

In online database mode, Oracle Loader for Hadoop can connect to the target database
using the credentials provided in the job configuration file or in an Oracle wallet. The
loader obtains the table metadata from the database. It can insert new records directly
into the target table or write them to a file in the Hadoop cluster. You can load records
from an output file when the data is needed in the database, or when the database
system is less busy.

Figure 3-1 shows the relationships among elements in online database mode.
Figure 3—1 Online Database Mode

I
Database System

Input Cracle Loader
Data tar Hadoop

Table
Metadata

N —

!
> | Hadoop
Data

Job
Configuration

Cracle
Database

CVS or
Data Fump
Qutput
File

3-2 Oracle Big Data Connectors User's Guide

Getting Started With Oracle Loader for Hadoop

Offline Database Mode

Offline database mode enables you to use Oracle Loader for Hadoop when the Oracle
Database system is on a separate network from the Hadoop cluster, or is otherwise
inaccessible. In this mode, Oracle Loader for Hadoop uses the information supplied in
a table metadata file, which you generate using a separate utility. The loader job stores
the output data in binary or text format output files on the Hadoop cluster. Loading
the data into Oracle Database is a separate procedure using another utility, such as
Oracle SQL Connector for Hadoop Distributed File System (HDFS) or SQL*Loader.

Figure 3-2 shows the relationships among elements in offline database mode. The
figure does not show the separate procedure of loading the data into the target table.

Figure 3-2 Offline Database Mode

Hadoop Cluster Database System
Table Table Oracle Loader
Metadata Metadata for Hadoop
SPR
Input Oracle Loader
Data for Hadoop

Job
Caonfiguration
Cracle
CVS or Database
Data Pump
Qutput
File

Getting Started With Oracle Loader for Hadoop

You take the following basic steps when using Oracle Loader for Hadoop:

1. The first time you use Oracle Loader for Hadoop, ensure that the software is
installed and configured.

See "Oracle Loader for Hadoop Setup" on page 1-12.
2. Connect to Oracle Database and create the target table.

See "Creating the Target Table" on page 3-5.

Oracle Loader for Hadoop 3-3

Getting Started With Oracle Loader for Hadoop

10.
11.

12.

13.

14.

15.

If you are using offline database mode, then generate the table metadata.

See "Generating the Target Table Metadata for Offline Database Mode" on
page 3-8.

Log in to either a node in the Hadoop cluster or a system set up as a Hadoop client
for the cluster.

If you are using offline database mode, then copy the table metadata to the
Hadoop system where you are logged in.

Create a configuration file. This file is an XML document that describes
configuration information, such as access to the target table metadata, the input
format of the data, and the output format.

See "Creating a Job Configuration File" on page 3-6.

Create an XML document that maps input fields to columns in the Oracle database
table. Optional.

See "Mapping Input Fields to Target Table Columns" on page 3-15.
Create a shell script to run the Oracle Loader for Hadoop job.
See "Running a Loader Job" on page 3-21.

If you are connecting to a secure cluster, then you run kinit to authenticate
yourself.

Run the shell script.

If the job fails, then use the diagnostic messages in the output to identify and
correct the error.

See "Job Reporting" on page 3-22.

After the job succeeds, check the command output for the number of rejected
records. If too many records were rejected, then you may need to modify the input
format properties.

If you generated text files or Data Pump-format files, then load the data into
Oracle Database using one of these methods:

s Create an external table using Oracle SQL Connector for HDFS (online
database mode only).

See Chapter 2.

= Copy the files to the Oracle Database system and use SQL*Loader or external
tables to load the data into the target database table. Oracle Loader for
Hadoop generates scripts that you can use for these methods.

See "About DelimitedTextOutputFormat" on page 3-19 or "About
DataPumpOutputFormat" on page 3-20.

Connect to Oracle Database as the owner of the target table. Query the table to
ensure that the data loaded correctly. If it did not, then modify the input or output
format properties as needed to correct the problem.

Before running the OraLoader job in a production environment, employ these
optimizations:

= Balancing Loads When Loading Data into Partitioned Tables

s Optimizing Communications Between Oracle Engineered Systems

3-4 Oracle Big Data Connectors User's Guide

Creating the Target Table

Creating the Target Table

Oracle Loader for Hadoop loads data into one target table, which must exist in the
Oracle database. The table can be empty or contain data already. Oracle Loader for
Hadoop does not overwrite existing data.

Create the table the same way that you would create one for any other purpose. It
must comply with the following restrictions:

= Supported Data Types for Target Tables
= Supported Partitioning Strategies for Target Tables

Supported Data Types for Target Tables

You can define the target table using any of these data types:
= BINARY DOUBLE

= BINARY_FLOAT

= CHAR
m DATE
= FLOAT

n INTERVAL DAY TO SECOND

n INTERVAL YEAR TO MONTH

= NCHAR

= NUMBER

s NVARCHAR2

= RAW

s TIMESTAMP

s TIMESTAMP WITH LOCAL TIME ZONE
s TIMESTAMP WITH TIME ZONE

s VARCHAR2

The target table can contain columns with unsupported data types, but these columns
must be nullable, or otherwise set to a value.

Supported Partitioning Strategies for Target Tables

Partitioning is a database feature for managing and efficiently querying very large
tables. It provides a way to decompose a large table into smaller and more manageable
pieces called partitions, in a manner entirely transparent to applications.

You can define the target table using any of the following single-level and
composite-level partitioning strategies.

s Hash
s Hash-Hash
s Hash-List

= Hash-Range

s Interval

Oracle Loader for Hadoop 3-5

Creating a Job Configuration File

s Interval-Hash
s Interval-List

= Interval-Range

n List
s List-Hash
s List-List

= List-Range

= Range

= Range-Hash
= Range-List

= Range-Range

Oracle Loader for Hadoop does not support reference partitioning or virtual
column-based partitioning.

See Also: Oracle Database VLDB and Partitioning Guide

Creating a Job Configuration File

A configuration file is an XML document that provides Hadoop with all the
information it needs to run a MapReduce job. This file can also provide Oracle Loader
for Hadoop with all the information it needs. See "Oracle Loader for Hadoop
Configuration Property Reference" on page 3-25.

Configuration properties provide the following information, which is required for all
Oracle Loader for Hadoop jobs:

= How to obtain the target table metadata.

See "About the Target Table Metadata" on page 3-8.
s The format of the input data.

See "About Input Formats" on page 3-10.
s The format of the output data.

See "About Output Formats" on page 3-17.

OraLoader implements the org.apache.hadoop.util.Tool interface and follows the
standard Hadoop methods for building MapReduce applications. Thus, you can
supply the configuration properties in a file (as shown here) or on the hadoop
command line. See "Running a Loader Job" on page 3-21.

You can use any text or XML editor to create the file. Example 3-1 provides an
example of a job configuration file.

Example 3-1 Job Configuration File

<?xml version="1.0" encoding="UTF-8" ?>
<configuration>

<l-- Input settings -—>

<property>
<name>mapreduce.inputformat.class</name>

3-6 Oracle Big Data Connectors User's Guide

Creating a Job Configuration File

<value>oracle.hadoop.loader.lib.input.DelimitedTextInputFormat</value>
</property>

<property>
<name>mapred.input.dir</name>
<value>/user/oracle/moviedemo/session/*00000</value>
</property>

<property>
<name>oracle.hadoop.loader. input.fieldTerminator</name>
<value>\u0009</value>

</property>

<l-- Output settings -—>
<property>
<name>mapreduce.outputformat.class</name>
<value>oracle.hadoop.loader.lib.output.0CIOutputFormat</value>
</property>

<property>
<name>mapred.output.dir</name>
<value>temp_out_session</value>
</property>

<l-- Table information -—>

<property>
<name>oracle.hadoop.loader.loaderMapFile</name>
<value>file:///home/oracle/movie/moviedemo/olh/loaderMap_
moviesession.xml</value>
</property>

<l-- Connection information -->

<property>
<name>oracle.hadoop.loader.connection.url</name>
<value>jdbc:oracle:thin:@${HOST} :${TCPPORT}/$S{SERVICE_NAME}</value>
</property>

<property>
<name>TCPPORT</name>
<value>1521</value>

</property>

<property>
<name>HOST</name>
<value>myoraclehost.example.com</value>
</property>

<property>
<name>SERVICE_NAME</name>
<value>orcl</value>
</property>

<property>
<name>oracle.hadoop.loader.connection.user</name>
<value>MOVIEDEMO</value>

</property>

Oracle Loader for Hadoop 3-7

About the Target Table Metadata

<property>

<name>oracle.hadoop.loader.connection.password</name>

<value>oracle</value>

<description> A password in clear text is NOT RECOMMENDED. Use an Oracle wallet
instead.</description>
</property>

</configuration>

About the Target Table Metadata

You must provide Oracle Loader for Hadoop with information about the target table.
The way that you provide this information depends on whether you run Oracle
Loader for Hadoop in online or offline database mode. See "About the Modes of
Operation” on page 3-2.

Providing the Connection Details for Online Database Mode

Oracle Loader for Hadoop uses table metadata from the Oracle database to identify
the column names, data types, partitions, and so forth. The loader automatically
fetches the metadata whenever a JDBC connection can be established.

Oracle recommends that you use a wallet to provide your credentials. To use an Oracle
wallet, enter the following properties in the job configuration file:

m oracle.hadoop.loader.connection.wallet_location
m oracle.hadoop.loader.connection.tns_admin

m oracle.hadoop.loader.connection.url or
oracle.hadoop.loader.connection. tnsEntryName

Oracle recommends that you do not store passwords in clear text; use an Oracle wallet
instead to safeguard your credentials. However, if you are not using an Oracle wallet,
then enter these properties:

m oracle.hadoop.loader.connection.url
m oracle.hadoop.loader.connection.user

m oracle.hadoop.loader.connection.password

Generating the Target Table Metadata for Offline Database Mode

Under some circumstances, the loader job cannot access the database, such as when
the Hadoop cluster is on a different network than Oracle Database. In such cases, you
can use the OraLoaderMetadata utility to extract and store the target table metadata in
a file.

To provide target table metadata in offline database mode:
1. Log in to the Oracle Database system.

2. The first time you use offline database mode, ensure that the software is installed
and configured on the database system.

See "Providing Support for Offline Database Mode" on page 1-13.

3. Export the table metadata by running the OralLoaderMetadata utility program. See
"OraLoaderMetadata Utility" on page 3-9.

4. Copy the generated XML file containing the table metadata to the Hadoop cluster.

3-8 Oracle Big Data Connectors User's Guide

About the Target Table Metadata

5. Use the oracle.hadoop.loader.tableMetadataFile property in the job
configuration file to specify the location of the XML metadata file on the Hadoop
cluster.

When the loader job runs, it accesses this XML document to discover the target
table metadata.

OraLoaderMetadata Utility

Use the following syntax to run the OraLoaderMetadata utility on the Oracle Database
system. You must enter the java command on a single line, although it is shown here
on multiple lines for clarity:

java oracle.hadoop.loader.metadata.OraLoaderMetadata
-user userName
-connection_url connection
[-schema schemaName]
-table tableName
-output fileName.xml

To see the OraLoaderMetadata Help file, use the command with no options.

Options

-user userName
The Oracle Database user who owns the target table. The utility prompts you for the
password.

-connection_url connection

The database connection string in the thin-style service name format:
jdbc:oracle:thin:@//hostName: port/serviceName

If you are unsure of the service name, then enter this SQL command as a privileged
user:

SQL> show parameter service

service_names string orcl

-schema schemaName

The name of the schema containing the target table. Unquoted values are capitalized,
and unquoted values are used exactly as entered. If you omit this option, then the
utility looks for the target table in the schema specified in the -user option.

-table tableName
The name of the target table. Unquoted values are capitalized, and unquoted values
are used exactly as entered.

-output fileName.xml
The output file name used to store the metadata document.

Example 3-2 shows how to store the target table metadata in an XML file.

Example 3-2 Generating Table Metadata
Run the OralLoaderMetadata utility:

$ java -cp '/tmp/oraloader-2.3.0-hl/jlib/*!'

Oracle Loader for Hadoop 3-9

About Input Formats

oracle.hadoop.loader.metadata.OraloaderMetadata -user HR -connection_url
jdbc:oracle:thin://@localhost:1521/orcl.example.com -table EMPLOYEES -output
employee_metadata.xml

The OraLoaderMetadata utility prompts for the database password.

Oracle Loader for Hadoop Release 2.3.0 - Production
Copyright (c) 2011, 2013, Oracle and/or its affiliates. All rights reserved.
[Enter Database Password:] password

OralLoaderMetadata creates the XML file in the same directory as the script.

$ more employee_metadata.xml
<?xml version="1.0" encoding="UTF-8"?>
<!l--

Oracle Loader for Hadoop Release 2.3.0 - Production
Copyright (c) 2011, 2013, Oracle and/or its affiliates. All rights reserved.

-——>
<DATABASE>
<ROWSET><ROW>
<TABLE_T>
<VERS_MAJOR>2</VERS_MAJOR>
<VERS_MINOR>5 </VERS_MINOR>
<OBJ_NUM>78610</0BJ_NUM>
<SCHEMA_OBJ>
<0OBJ_NUM>78610</0BJ_NUM>
<DATAOBJ_NUM>78610</DATAOBJ_NUM>
<OWNER_NUM>87</0OWNER_NUM>
<OWNER_NAME>HR</OWNER_NAME>
<NAME>EMPLOYEES< /NAME>

About Input Formats

An input format reads a specific type of data stored in Hadoop. Several input formats
are available, which can read the data formats most commonly found in Hadoop:

s Delimited Text Input Format

s Complex Text Input Formats

= Hive Table Input Format

= Avro Input Format

s Oracle NoSQL Database Input Format

You can also use your own custom input formats. The descriptions of the built-in
formats provide information that may help you develop custom Java InputFormat
classes. See "Custom Input Formats" on page 3-14.

You specify a particular input format for the data that you want to load into a database
table, by using the mapreduce. inputformat.class configuration property in the job
configuration file.

3-10 Oracle Big Data Connectors User's Guide

About Input Formats

Note: The built-in text formats do not handle header rows or
newline characters (\n) embedded in quoted values.

Delimited Text Input Format

To load data from a delimited text file, set mapreduce. inputformat.class to

oracle.hadoop.loader.lib.input.DelimitedTextInputFormat

About DelimitedTextInputFormat

The input file must comply with these requirements:

= Records must be separated by newline characters.

» Fields must be delimited using single-character markers, such as commas or tabs.
Any empty-string token, whether enclosed or unenclosed, is replaced by a null.

DelimitedTextInputFormat emulates the tokenization method of SQL*Loader:
Terminated by t, and optionally enclosed by ie, or by ie and te.
DelimitedTextInputFormat uses the following syntax rules, where t is the field
terminator, ie is the initial field encloser, te is the trailing field encloser, and c is one
character.

= Line = Token t Line | Token\n

s Token = EnclosedToken | Unenclosed Token

= EnclosedToken = (white-space)* ie [(non-te)* te te]* (non-te)* te (white-space)*
= UnenclosedToken = (white-space)* (non-t)*

= white-space = {c¢ | Character.isWhitespace(c) and c!=t}

White space around enclosed tokens (data values) is discarded. For unenclosed tokens,
the leading white space is discarded, but not the trailing white space (if any).

This implementation enables you to define custom enclosers and terminator
characters, but it hard codes the record terminator as a newline, and white space as
Java Character.isWhitespace. A white space can be defined as the field terminator,
but then that character is removed from the class of white space characters to prevent
ambiguity.

Required Configuration Properties
None. The default format separates fields with commas and has no field enclosures.

Optional Configuration Properties

Use one or more of the following properties to define the field delimiters for
DelimitedTextInputFormat:

= oracle.hadoop.loader.input.field Terminator

= oracle.hadoop.loader.input.initialFieldEncloser

= oracle.hadoop.loader.input.trailingFieldEncloser

Use the following property to provide names for the input fields:

= oracle.hadoop.loader.input.fieldNames

Oracle Loader for Hadoop 3-11

About Input Formats

Complex Text Input Formats

To load data from text files that are more complex than DelimitedTextInputFormat
can handle, set mapreduce. inputformat.class to

oracle.hadoop.loader.lib.input.RegexInputFormat

For example, a web log might delimit one field with quotes and another field with
square brackets.

About RegexInputFormat

RegexInputFormat requires that records be separated by newline characters. It
identifies fields in each text line by matching a regular expression:

s The regular expression must match the entire text line.
» The fields are identified using the capturing groups in the regular expression.
RegexInputFormat uses the java.util.regex regular expression-based pattern
matching engine.
See Also: The Java Platform Standard Edition 6 Java Reference for more
information about java.util.regex:

http://docs.oracle.com/javase/6/docs/api/java/util/regex/pac
kage-summary.html

Required Configuration Properties
Use the following property to describe the data input file:

m oracle.hadoop.loader.input.regexPattern

Optional Configuration Properties
Use the following property to identify the names of all input fields:

m oracle.hadoop.loader.input.fieldNames
Use this property to enable case-insensitive matches:

m oracle.hadoop.loader.input.regexCaseInsensitive

Hive Table Input Format

To load data from a Hive table, set mapreduce. inputformat.class to

oracle.hadoop.loader.lib.input.HiveToAvroInputFormat

About HiveToAvrolnputFormat

HiveToAvroInputFormat imports the entire table, which includes all the files in the
Hive table directory or, for partition tables, all files in each partition directory.

Oracle Loader for Hadoop rejects all rows with complex (non-primitive) column
values. UNIONTYPE fields that resolve to primitive values are supported. See "Handling
Rejected Records" on page 3-22.

HiveToAvroInputFormat transforms rows in the Hive table into Avro records, and
capitalizes the Hive table column names to form the field names. This automatic
capitalization improves the likelihood that the field names match the target table
column names. See "Mapping Input Fields to Target Table Columns" on page 3-15.

3-12 Oracle Big Data Connectors User's Guide

About Input Formats

Required Configuration Properties

You must specify the Hive database and table names using the following configuration
properties:

m oracle.hadoop.loader.input.hive.databaseName

m oracle.hadoop.loader.input.hive.tableName

Avro Input Format

To load data from binary Avro data files containing standard Avro-format records, set
mapreduce. inputformat.class to

oracle.hadoop.loader.lib.input.AvroInputFormat

To process only files with the .avro extension, append *.avro to directories listed in
the mapred. input.dir configuration property.

Configuration Properties
None

Oracle NoSQL Database Input Format
To load data from Oracle NoSQL Database, set mapreduce. inputformat.class to
oracle.kv.hadoop.KVAvroInputFormat

This input format is defined in Oracle NoSQL Database 11g, Release 2 and later
releases.

About KVAvrolnputFormat

Oracle Loader for Hadoop uses KVAvroInputFormat to read data directly from Oracle
NoSQL Database.

KVAvroInputFormat passes the value but not the key from the key-value pairs in
Oracle NoSQL Database. If you must access the Oracle NoSQL Database keys as Avro
data values, such as storing them in the target table, then you must create a Java
InputFormat class that implements oracle.kv.hadoop.AvroFormatter. Then you can
specify the oracle.kv. formatterClass property in the Oracle Loader for Hadoop
configuration file.

The KVAvroInputFormat class is a subclass of
org.apache.hadoop.mapreduce. InputFormat<oracle.kv.Key,
org.apache.avro.generic.IndexedRecord>

See Also: Javadoc for the KVInputFormatBase class at

http://docs.oracle.com/cd/NOSQL/html/index.html

Required Configuration Properties

You must specify the name and location of the key-value store using the following
configuration properties:

m oracle.kv.hosts
m oracle.kv.kvstore

See "Oracle NoSQL Database Configuration Properties” on page 3-38.

Oracle Loader for Hadoop 3-13

About Input Formats

Custom Input Formats

If the built-in input formats do not meet your needs, then you can write a Java class for
a custom input format. The following information describes the framework in which
an input format works in Oracle Loader for Hadoop.

About Implementing a Custom Input Format

Oracle Loader for Hadoop gets its input from a class extending
org.apache.hadoop.mapreduce. InputFormat. You must specify the name of that class
in the mapreduce. inputformat.class configuration property.

The input format must create RecordReader instances that return an Avro
IndexedRecord input object from the getCurrentvalue method. Use this method
signature:

public org.apache.avro.generic.IndexedRecord getCurrentValue()
throws IOException, InterruptedException;

Oracle Loader for Hadoop uses the schema of the IndexedRecord input object to
discover the names of the input fields and map them to the columns of the target table.

About Error Handling

If processing an IndexedRecord value results in an error, Oracle Loader for Hadoop
uses the object returned by the getCurrentKey method of the RecordReader to provide
feedback. It calls the toString method of the key and formats the result in an error
message. InputFormat developers can assist users in identifying the rejected records
by returning one of the following;:

s Data file URI
m InputSplit information
s Data file name and the record offset in that file

Oracle recommends that you do not return the record in clear text, because it might
contain sensitive information; the returned values can appear in Hadoop logs
throughout the cluster. See "Logging Rejected Records in Bad Files" on page 3-23.

If a record fails and the key is null, then the loader generates no identifying
information.

Supporting Data Sampling

Oracle Loader for Hadoop uses a sampler to improve performance of its MapReduce
job. The sampler is multithreaded, and each sampler thread instantiates its own copy
of the supplied InputFormat class. When implementing a new InputFormat, ensure
that it is thread-safe. See "Balancing Loads When Loading Data into Partitioned
Tables" on page 3-23.

InputFormat Source Code Example
Oracle Loader for Hadoop provides the source code for an InputFormat example,
which is located in the examples/jsrc/ directory.

The sample format loads data from a simple, comma-separated value (CSV) file. To
use this input format, specify oracle.hadoop.loader.examples.CSVInputFormat as
the value of mapreduce. inputformat.class in the job configuration file.

This input format automatically assigns field names of F0, F1, F2, and so forth. It does
not have configuration properties.

3-14 Oracle Big Data Connectors User's Guide

Mapping Input Fields to Target Table Columns

Mapping Input Fields to Target Table Columns

Mapping identifies which input fields are loaded into which columns of the target
table. You may be able to use the automatic mapping facilities, or you can always
manually map the input fields to the target columns.

Automatic Mapping

Oracle Loader for Hadoop can automatically map the fields to the appropriate
columns when the input data complies with these requirements:

All columns of the target table are loaded.

The input data field names in the IndexedRecord input object exactly match the
column names.

All input fields that are mapped to DATE columns can be parsed using the same
Java date format.

Use these configuration properties for automatic mappings:

Manual Mapping

oracle.hadoop.loader.loaderMap.targetTable: Identifies the target table.

oracle.hadoop.loader.defaultDateFormat: Specifies a default date format that
applies to all DATE fields.

For loads that do not comply with the requirements for automatic mapping, you must
define additional properties. These properties enable you to:

Load data into a subset of the target table columns.

Create explicit mappings when the input field names are not exactly the same as
the database column names.

Specify different date formats for different input fields.

Use these properties for manual mappings:

oracle.hadoop.loader.loaderMap.targetTable configuration property to
identify the target table. Required.

oracle.hadoop.loader.loaderMap.columnNames: Lists the columns to be loaded.

oracle.hadoop.loader.defaultDateFormat: Specifies a default date format that
applies to all DATE fields.

oracle.hadoop.loader.loaderMap.column_name.format: Specifies the data
format for a particular column.

oracle.hadoop.loader.loaderMap.column_name.field: Identifies the name of an
Avro record field mapped to a particular column.

Converting a Loader Map File

The following utility converts a loader map file from earlier releases to a configuration

file:

hadoop oracle.hadoop.loader.metadata.LoaderMap -convert map_file conf file

Oracle Loader for Hadoop 3-15

Mapping Input Fields to Target Table Columns

Options

map_file
The name of the input loader map file on the local file system (not HDEFS).

conf_file
The name of the output configuration file on the local file system (not HDFS).

Example 3-3 shows a sample conversion.

Example 3-3 Converting a Loader File to Configuration Properties

$ HADOOP_CLASSPATH="$HADOOP_ CLASSPATH:$OLH_HOME/jlib/*"
$ hadoop oracle.hadoop.loader.metadata.LoaderMap -convert loadermap.xml conf.xml
Oracle Loader for Hadoop Release 2.3.0 - Production

Copyright (c) 2011, 2013, Oracle and/or its affiliates. All rights reserved.

Input Loader Map File loadermap.xml

<?xml version="1.0" encoding="UTF-8"?>
<LOADER_MAP>
<SCHEMA>HR</SCHEMA>
<TABLE>EMPLOYEES</TABLE>
<COLUMN field="F0">EMPLOYEE_ID</COLUMN>
<COLUMN field="F1">LAST NAME</COLUMN>
<COLUMN field="F2">EMAIL</COLUMN>
<COLUMN field="F3" format="MM-dd-yyyy">HIRE_DATE</COLUMN>
<COLUMN field="F4">JOB_ID</COLUMN>
</LOADER_MAP>

Output Configuration File conf.xml

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<configuration>

<property>
<name>oracle.hadoop.loader.loaderMap.targetTable</name>
<value>HR.EMPLOYEES</value>

</property>

<property>
<name>oracle.hadoop.loader.loaderMap.columnNames</name>
<value>EMPLOYEE_ID,LAST NAME,EMAIL,HIRE_DATE,JOB_ID</value>

</property>

<property>
<name>oracle.hadoop.loader.loaderMap.EMPLOYEE_ID.field</name>
<value>F0</value>

</property>

<property>
<name>oracle.hadoop.loader.loaderMap.EMPLOYEE_ID. format</name>
<value></value>

</property>

<property>
<name>oracle.hadoop.loader.loaderMap.LAST NAME.field</name>
<value>Fl</value>

</property>

<property>
<name>oracle.hadoop.loader.loaderMap.LAST NAME.format</name>
<value></value>

</property>

<property>

3-16 Oracle Big Data Connectors User's Guide

About Output Formats

<name>oracle.hadoop.loader.loaderMap.EMAIL. field</name>
<value>F2</value>

</property>

<property>
<name>oracle.hadoop.loader.loaderMap.EMAIL. format</name>
<value></value>

</property>

<property>
<name>oracle.hadoop.loader.loaderMap.HIRE_DATE. field</name>
<value>F3</value>

</property>

<property>
<name>oracle.hadoop.loader.loaderMap.HIRE _DATE. format</name>
<value>MM-dd-yyyy</value>

</property>

<property>
<name>oracle.hadoop.loader.loaderMap.JOB_ID. field</name>
<value>F4</value>

</property>

<property>
<name>oracle.hadoop.loader.loaderMap.JOB_ID. format</name>
<value></value>

</property>

</configuration>

About Output Formats

In online database mode, you can choose between loading the data directly into an
Oracle database table or storing it in a file. In offline database mode, you are restricted
to storing the output data in a file, which you can load into the target table as a
separate procedure. You specify the output format in the job configuration file using
the mapreduce. outputformat.class property.

Choose from these output formats:
s JDBC Output Format: Loads the data directly into the target table.

s Oracle OCI Direct Path Output Format: Loads the data directly into the target
table.

s Delimited Text Output Format: Stores the data in a local file.
s Oracle Data Pump Output Format: Stores the data in a local file.

JDBC Output Format

You can use a JDBC connection between the Hadoop system and Oracle Database to
load the data. The output records of the loader job are loaded directly into the target
table by map or reduce tasks as part of the OraLoader process, in online database
mode. No additional steps are required to load the data.

A JDBC connection must be open between the Hadoop cluster and the Oracle
Database system for the duration of the job.

To use this output format, set mapreduce.outputformat.class to

oracle.hadoop.loader.lib.output.JDBCOutputFormat

Oracle Loader for Hadoop 3-17

About Output Formats

About JDBCOutputFormat

JDBCOutputFormat uses standard JDBC batching to optimize performance and
efficiency. If an error occurs during batch execution, such as a constraint violation, the
JDBC driver stops execution immediately. Thus, if there are 100 rows in a batch and
the tenth row causes an error, then nine rows are inserted and 91 rows are not.

The JDBC driver does not identify the row that caused the error, and so Oracle Loader
for Hadoop does not know the insert status of any of the rows in the batch. It counts
all rows in a batch with errors as "in question," that is, the rows may or may not be
inserted in the target table. The loader then continues loading the next batch. It
generates a load report at the end of the job that details the number of batch errors and
the number of rows in question.

One way that you can handle this problem is by defining a unique key in the target
table. For example, the HR.EMPLOYEES table has a primary key named EMPLOYEE_
ID. After loading the data into HR. EMPLOYEES, you can query it by EMPLOYEE_ID
to discover the missing employee IDs.Then you can locate the missing employee IDs
in the input data, determine why they failed to load, and try again to load them.

Configuration Properties
To control the batch size, set this property:

oracle.hadoop.loader.connection.defaultExecuteBatch

Oracle OCI Direct Path Output Format

You can use the direct path interface of Oracle Call Interface (OCI) to load data into the
target table. Each reducer loads into a distinct database partition in online database
mode, enabling the performance gains of a parallel load. No additional steps are
required to load the data.

The OCI connection must be open between the Hadoop cluster and the Oracle
Database system for the duration of the job.

To use this output format, set mapreduce.outputformat.class to

oracle.hadoop.loader.lib.output.OCIOutputFormat

About OCIOutputFormat

0CIOutputFormat has the following restrictions:

s ltis available only on the Linux x86.64 platform.

s The MapReduce job must create one or more reducers.
» The target table must be partitioned.

s For Oracle Database 11g (11.2.0.3), apply the patch for bug 13498646 if the target
table is a composite interval partitioned table in which the subpartition key
contains a CHAR, VARCHAR?2, NCHAR, or NVARCHAR2 column. Later versions of Oracle
Database do not require this patch.

Configuration Properties
To control the size of the direct path stream buffer, set this property:

oracle.hadoop.loader.output.dirpathBufsize

3-18 Oracle Big Data Connectors User's Guide

About Output Formats

Delimited Text Output Format

You can create delimited text output files on the Hadoop cluster. The map or reduce
tasks generate delimited text files, using the field delimiters and enclosers that you
specify in the job configuration properties. Afterward, you can load the data into an
Oracle database as a separate procedure. See "About DelimitedTextOutputFormat" on
page 3-19.

This output format can use either an open connection to the Oracle Database system to
retrieve the table metadata in online database mode, or a table metadata file generated
by the OraloaderMetadata utility in offline database mode.

To use this output format, set mapreduce.outputformat.class to

oracle.hadoop.loader.lib.output.DelimitedTextOutputFormat

About DelimitedTextOutputFormat

Output tasks generate delimited text format files, and one or more corresponding
SQL*Loader control files, and SQL scripts for loading with external tables.

If the target table is not partitioned or if oracle.hadoop.loader.loadByPartition is
false, then DelimitedTextOutputFormat generates the following files:

= A data file named oraloader-taskld-csv-0.dat.
= A SQL*Loader control file named oraloader-csv.ctl for the entire job.

= A SQL script named oraloader-csv.sql to load the delimited text file into the target
table.

For partitioned tables, multiple output files are created with the following names:
» Data files: oraloader-taskld-csv-partitionld.dat

= SQL*Loader control files: oraloader-taskld-csv-partitionld.ctl

= SQL script: oraloader-csv.sql

In the generated file names, taskld is the mapper or reducer identifier, and partitionld is
the partition identifier.

If the Hadoop cluster is connected to the Oracle Database system, then you can use
Oracle SQL Connector for HDFS to load the delimited text data into an Oracle
database. See Chapter 2.

Alternatively, you can copy the delimited text files to the database system and load the
data into the target table in one of the following ways:

= Use the generated control files to run SQL*Loader and load the data from the
delimited text files.

» Use the generated SQL scripts to perform external table loads.

The files are located in the ${map.output.dir}/_olh directory.

Configuration Properties

The following properties control the formatting of records and fields in the output
files:

m oracle.hadoop.loader.output.escapeEnclosers
m oracle.hadoop.loader.output.fieldTerminator

m oracle.hadoop.loader.output.initialFieldEncloser

Oracle Loader for Hadoop 3-19

About Output Formats

m oracle.hadoop.loader.output.trailingFieldEncloser

Example 3—4 shows a sample SQL*Loader control file that might be generated by an
output task.

Example 3-4 Sample SQL*Loader Control File

LOAD DATA CHARACTERSET AL32UTF8

INFILE 'oraloader-csv-1-0.dat'

BADFILE 'oraloader-csv-1-0.bad'

DISCARDFILE 'oraloader-csv-1-0.dsc'

INTO TABLE "SCOTT"."CSV_PART" PARTITION(10) APPEND

FIELDS TERMINATED BY ',' OPTIONALLY ENCLOSED BY '"'
(

"ID" DECIMAL EXTERNAL,

"NAME" CHAR,

"DOB" DATE 'SYYYY-MM-DD HH24:MI:SS'

Oracle Data Pump Output Format

You can create Data Pump format files on the Hadoop cluster. The map or reduce tasks
generate Data Pump files. Afterward, you can load the data into an Oracle database as
a separate procedure. See "About DataPumpOutputFormat" on page 3-20.

This output format can use either an open connection to the Oracle Database system in
online database mode, or a table metadata file generated by the OraloaderMetadata
utility in offline database mode.

To use this output format, set mapreduce.outputformat.class to

oracle.hadoop.loader.lib.output.DataPumpOutputFormat

About DataPumpOutputFormat

DataPumpOutputFormat generates data files with names in this format:
oraloader-taskld-dp-partitionld.dat

In the generated file names, taskld is the mapper or reducer identifier, and partitionld is
the partition identifier.

If the Hadoop cluster is connected to the Oracle Database system, then you can use
Oracle SQL Connector for HDFS to load the Data Pump files into an Oracle database.
See Chapter 2.

Alternatively, you can copy the Data Pump files to the database system and load them
using a SQL script generated by Oracle Loader for Hadoop. The script performs the
following tasks:

1. Creates an external table definition using the ORACLE_DATAPUMP access driver. The
binary format Oracle Data Pump output files are listed in the LOCATION clause of
the external table.

2. Creates a directory object that is used by the external table. You must uncomment
this command before running the script. To specify the directory name used in the
script, set the oracle.hadoop.loader.extTabDirectoryName property in the job
configuration file.

3. Insert the rows from the external table into the target table. You must uncomment
this command before running the script.

The SQL script is located in the ${map.output.dir}/_olh directory.

3-20 Oracle Big Data Connectors User's Guide

Running a Loader Job

See Also:

n Oracle Database Administrator’s Guide for more information about
creating and managing external tables

m Oracle Database Utilities for more information about the ORACLE_
DATAPUMP access driver

Running a Loader Job

To run a job using Oracle Loader for Hadoop, you use the OraLoader utility in a
hadoop command.

The following is the basic syntax:

hadoop jar SOLH_HOME/jlib/oraloader.jar oracle.hadoop.loader.OraLoader \
-conf job_config.xml \
-libjars input_file_formatl.jar[, input_file format2.jar...]

You can include any generic hadoop command-line option. OraLoader implements the
org.apache.hadoop.util.Tool interface and follows the standard Hadoop methods
for building MapReduce applications.

Basic Options

-conf job_config.xml
Identifies the job configuration file. See "Creating a Job Configuration File" on
page 3-6.

-libjars
Identifies the JAR files for the input format.

= When using the example input format, specify $OLH_
HOME/jlib/oraloader-examples jar.

= When using the Hive or Oracle NoSQL Database input formats, you must specify
additional JAR files, as described later in this section.

= When using a custom input format, specify its JAR file. (Also remember to add it
to HADOOP_CLASSPATH.)

Separate multiple file names with commas, and list each one explicitly. Wildcard
characters and spaces are not allowed.

Oracle Loader for Hadoop prepares internal configuration information for the
MapReduce tasks. It stores table metadata information and the dependent Java
libraries in the distributed cache, so that they are available to the MapReduce tasks
throughout the cluster.

Example of Running OralLoader

The following example uses a built-in input format and a job configuration file named
MyConf.xml:

HADOOP_CLASSPATH="$HADOOP_CLASSPATH: SOLH_HOME/jlib/*"

hadoop jar $OLH_HOME/jlib/oraloader.jar oracle.hadoop.loader.OraLoader \
-conf MyConf.xml -libjars $SOLH_HOME/jlib/oraloader-examples.jar

Oracle Loader for Hadoop 3-21

Handling Rejected Records

See Also:
s For the full hadoop command syntax and generic options:

http://hadoop.apache.org/docs/current /hadoop-project-dist
/hadoop-common/CommandsManual . html

Specifying Hive Input Format JAR Files

When using HiveToAvroInputFormat, you must add the Hive configuration directory
to the HADOOP_CLASSPATH environment variable:

HADOOP_CLASSPATH="$HADOOP_CLASSPATH:$OLH_HOME/jlib/*:hive_home/lib/*:hive conf_
dir"

You must also add the following Hive JAR files, in a comma-separated list, to the
-libjars option of the hadoop command. Replace the stars (*) with the complete file
names on your system:

= hive-exec-*jar
= hive-metastore-* jar
» libfb303* jar

This example shows the full file names in Cloudera's Distribution including Apache
Hadoop (CDH) 4.4:

hadoop jar SOLH_HOME/jlib/oraloader.jar oracle.hadoop.loader.OraLoader \

-conf MyConf.xml \

-libjars

hive-exec-0.10.0-cdh4.4.0.jar, hive-metastore-0.10.0-cdh4.4.0.jar,1ibfb303-0.9.0.ja
r

Specifying Oracle NoSQL Database Input Format JAR Files

Job Reporting

When using KVAvroInputFormat from Oracle NoSQL Database 11g, Release 2, you
must include $KVHOME/1lib/kvstore. jar in your HADOOP_CLASSPATH and you must
include the -1ibjars option in the hadoop command:

hadoop jar $OLH_HOME/jlib/oraloader.jar oracle.hadoop.loader.OraLoader \
-conf MyConf.xml \
-libjars S$KVHOME/lib/kvstore.jar

Oracle Loader for Hadoop consolidates reporting information from individual tasks
into a file named $ {map.output.dir}/_olh/oraloader-report.txt. Among other
statistics, the report shows the number of errors, broken out by type and task, for each
mapper and reducer.

Handling Rejected Records

Oracle Loader for Hadoop may reject input records for a variety of reasons, such as:
s Errors in the mapping properties
= Missing fields in the input data

= Records mapped to invalid table partitions

3-22 Oracle Big Data Connectors User's Guide

http://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-common/CommandsManual.html
http://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-common/CommandsManual.html

Balancing Loads When Loading Data into Partitioned Tables

= Badly formed records, such as dates that do not match the date format or records
that do not match regular expression patterns

Logging Rejected Records in Bad Files

By default, Oracle Loader for Hadoop does not log the rejected records into Hadoop
logs; it only logs information on how to identify the rejected records. This practice
prevents user-sensitive information from being stored in Hadoop logs across the
cluster.

You can direct Oracle Loader for Hadoop to log rejected records by setting the
oracle.hadoop.loader.logBadRecords configuration property to true. Then Oracle
Loader for Hadoop logs bad records into one or more "bad" files in the _olh/ directory
under the job output directory.

Setting a Job Reject Limit

Some problems can cause Oracle Loader for Hadoop to reject every record in the
input. To mitigate the loss of time and resources, Oracle Loader for Hadoop aborts the
job after rejecting 1000 records.

You can change the maximum number of rejected records allowed by setting the
oracle.hadoop.loader.rejectLimit configuration property. A negative value turns
off the reject limit and allows the job to run to completion regardless of the number of
rejected records.

Balancing Loads When Loading Data into Partitioned Tables

The goal of load balancing is to generate a MapReduce partitioning scheme that
assigns approximately the same amount of work to all reducers.

The sampling feature of Oracle Loader for Hadoop balances loads across reducers
when data is loaded into a partitioned database table. It generates an efficient
MapReduce partitioning scheme that assigns database partitions to the reducers.

The execution time of a reducer is usually proportional to the number of records that it
processes—the more records, the longer the execution time. When sampling is
disabled, all records from a given database partition are sent to one reducer. This can
result in unbalanced reducer loads, because some database partitions may have more
records than others. Because the execution time of a Hadoop job is usually dominated
by the execution time of its slowest reducer, unbalanced reducer loads slow down the
entire job.

Using the Sampling Feature

You can turn the sampling feature on or off by setting the
oracle.hadoop.loader.sampler.enableSampling configuration property. Sampling is
turned on by default.

Tuning Load Balancing

These job configuration properties control the quality of load balancing;:
m oracle.hadoop.loader.sampler.maxLoadFactor
m oracle.hadoop.loader.sampler.loadCI

The sampler uses the expected reducer load factor to evaluate the quality of its
partitioning scheme. The load factor is the relative overload for each reducer,

Oracle Loader for Hadoop 3-23

Balancing Loads When Loading Data into Partitioned Tables

calculated as (assigned_load - ideal_load) /ideal_load. This metric indicates how much a
reducer's load deviates from a perfectly balanced reducer load. A load factor of 1.0
indicates a perfectly balanced load (no overload).

Small load factors indicate better load balancing. The maxLoadFactor default of 0.05
means that no reducer is ever overloaded by more than 5%. The sampler guarantees
this maxLoadFactor with a statistical confidence level determined by the value of
loadCI. The default value of 1oadCI is 0.95, which means that any reducer's load factor
exceeds maxLoadFactor in only 5% of the cases.

There is a trade-off between the execution time of the sampler and the quality of load
balancing. Lower values of maxLoadFactor and higher values of 1oadCI achieve more
balanced reducer loads at the expense of longer sampling times. The default values of
maxLoadFactor=0.05 and 1oadCI=0.95 are a good trade-off between load balancing
quality and execution time.

Tuning Sampling Behavior

By default, the sampler runs until it collects just enough samples to generate a
partitioning scheme that satisfies the maxLoadFactor and 1oadCI criteria.

However, you can limit the sampler running time by setting the
oracle.hadoop.loader.sampler.maxSamplesPct property, which specifies the
maximum number of sampled records.

When Does Oracle Loader for Hadoop Use the Sampler's Partitioning Scheme?

Oracle Loader for Hadoop uses the generated partitioning scheme only if sampling is
successful. A sampling is successful if it generates a partitioning scheme with a
maximum reducer load factor of (1+ maxLoadFactor) guaranteed at a statistical
confidence level of 1oadCI.

The default values of maxLoadFactor, loadCI, and maxSamplesPct allow the sampler to
successfully generate high-quality partitioning schemes for a variety of different input
data distributions. However, the sampler might be unsuccessful in generating a
partitioning scheme using custom property values, such as when the constraints are
too rigid or the number of required samples exceeds the user-specified maximum of
maxSamplesPct. In these cases, Oracle Loader for Hadoop generates a log message
identifying the problem, partitions the records using the database partitioning scheme,
and does not guarantee load balancing.

Alternatively, you can reset the configuration properties to less rigid values. Either
increase maxSamplesPct, or decrease maxLoadFactor or 1oadCI, or both.

Resolving Memory Issues

A custom input format may return input splits that do not fit in memory:. If this
happens, the sampler returns an out-of-memory error on the client node where the
loader job is submitted.

To resolve this problem:
= Increase the heap size of the JVM where the job is submitted.
= Adjust the following properties:

- oracle.hadoop.loader.sampler.hintMaxSplitSize

- oracle.hadoop.loader.sampler.hintNumMapTasks

3-24 Oracle Big Data Connectors User's Guide

Oracle Loader for Hadoop Configuration Property Reference

If you are developing a custom input format, then see "Custom Input Formats" on
page 3-14.

What Happens When a Sampling Feature Property Has an Invalid Value?

If any configuration properties of the sampling feature are set to values outside the
accepted range, an exception is not returned. Instead, the sampler prints a warning
message, resets the property to its default value, and continues executing.

Optimizing Communications Between Oracle Engineered Systems

If you are using Oracle Loader for Hadoop to load data from Oracle Big Data
Appliance to Oracle Exadata Database Machine, then you can increase throughput by
configuring the systems to use Sockets Direct Protocol (SDP) over the InfiniBand
private network. This setup provides an additional connection attribute whose sole
purpose is serving connections to Oracle Database to load data.

To specify SDP protocol:

1. Add JVM options to the HADOOP_OPTS environment variable to enable JDBC SDP
export:

HADOOP_OPTS="-Doracle.net.SDP=true -Djava.net.preferIPv4Stack=true"
2. Configure the Oracle listener on Exadata with a specific port address for SDP

(such as 1522). In the job configuration file, set
oracle.hadoop.loader.connection.url to SDP using this syntax:

jdbc:oracle:thin:@ (DESCRIPTION= (ADDRESS= (PROTOCOL=SDP)
(HOST=hostName) (PORT=portNumber))
(CONNECT_DATA= (SERVICE_NAME=serviceName)))

Replace hostName, portNumber, and serviceName with the appropriate values to
identify Oracle Database on your Oracle Exadata Database Machine.

See Also: Oracle Big Data Appliance Software User’s Guide for more
information about configuring communications over InfiniBand

Oracle Loader for Hadoop Configuration Property Reference

OraLoader uses the standard methods of specifying configuration properties in the
hadoop command. You can use the -conf option to identify configuration files, and
the -D option to specify individual properties. See "Running a Loader Job" on

page 3-21.

This section describes the OraLoader configuration properties, the Oracle NoSQL
Database configuration properties, and a few generic Hadoop MapReduce properties
that you typically must set for an OraLoader job:

= MapReduce Configuration Properties
s Oraloader Configuration Properties
s Oracle NoSQL Database Configuration Properties

A configuration file showing all OraLoader properties is in $OLH_
HOME/doc/oraloader-conf.xml.

Oracle Loader for Hadoop 3-25

Oracle Loader for Hadoop Configuration Property Reference

See Also: Hadoop documentation for job configuration files at

http://wiki.apache.org/hadoop/JobConfFile

MapReduce Configuration Properties

mapred.job.name
Type: String

Default Value: Oraloader

Description: The Hadoop job name. A unique name can help you monitor the job
using tools such as the Hadoop JobTracker web interface and Cloudera Manager.

mapred.input.dir
Type: String

Default Value: Not defined

Description: A comma-separated list of input directories.

mapreduce.inputformat.class
Type: String

Default Value: Not defined

Description: Identifies the format of the input data. You can enter one of the following
built-in input formats, or the name of a custom InputFormat class:

m oracle.hadoop.loader.lib.input.AvroInputFormat

m oracle.hadoop.loader.lib.input.DelimitedTextInputFormat
m oracle.hadoop.loader.lib.input.HiveToAvroInputFormat

m oracle.hadoop.loader.lib.input.RegexInputFormat

m oracle.kv.hadoop.KVAvroInputFormat

See "About Input Formats" on page 3-10 for descriptions of the built-in input formats.

mapred.output.dir
Type: String

Default Value: Not defined

Description: A comma-separated list of output directories, which cannot exist before
the job runs. Required.

mapreduce.outputformat.class
Type: String

Default Value: Not defined
Description: Identifies the output type. The values can be:
m oracle.hadoop.loader.lib.output.DataPumpOutputFormat

Writes data records into binary format files that can be loaded into the target table
using an external table.

m oracle.hadoop.loader.lib.output.DelimitedTextOutputFormat

Writes data records to delimited text format files such as comma-separated values
(CSV) format files.

m oracle.hadoop.loader.lib.output.JDBCOutputFormat

3-26 Oracle Big Data Connectors User's Guide

Oracle Loader for Hadoop Configuration Property Reference

Inserts rows into the target table using a JDBC connection.
m oracle.hadoop.loader.lib.output.0CIOutputFormat
Inserts rows into the target table using the Oracle OCI Direct Path interface.

See "About Output Formats" on page 3-17.

OralLoader Configuration Properties

oracle.hadoop.loader.badRecordFlushinterval
Type: Integer

Default Value: 500

Description: Sets the maximum number of records that a task attempt can log before
flushing the log file. This setting limits the number of records that can be lost when the
record reject limit (oracle.hadoop.loader.rejectLimit) is reached and the job stops
running.

The oracle.hadoop.loader.logBadRecords property must be set to true for a flush
interval to take effect.

oracle.hadoop.loader.compressionFactors
Type: Decimal

Default Value: BASIC=5.0,0LTP=5.0,QUERY_LOW=10.0, QUERY_HIGH=10.0,ARCHIVE_
LOW=10.0,ARCHIVE_HIGH=10.0

Description: Defines the compression factor for different types of compression. The
value is a comma-delimited list of name=value pairs. The name can be one of the
following keywords:

ARCHIVE_HIGH
ARCHIVE_LOW
BASIC

OLTP
QUERY_HIGH
QUERY_LOW

oracle.hadoop.loader.connection.defaultExecuteBatch
Type: Integer

Default Value: 100

Description: The number of records inserted in one trip to the database. It applies only
to JDBCOutputFormat and OCIOutputFormat.

Specify a value greater than or equal to 1. Although the maximum value is unlimited,
very large batch sizes are not recommended because they result in a large memory
footprint without much increase in performance.

A value less than 1 sets the property to the default value.

oracle.hadoop.loader.connection.oci_url
Type: String

Default Value: Value of oracle.hadoop.loader.connection.url

Description: The database connection string used by 0CIOutputFormat. This property
enables the OCI client to connect to the database using different connection parameters
than the JDBC connection URL.

The following example specifies Socket Direct Protocol (SDP) for OCI connections.

Oracle Loader for Hadoop 3-27

Oracle Loader for Hadoop Configuration Property Reference

(DESCRIPTION= (ADDRESS_LIST=
(ADDRESS= (PROTOCOL=SDP) (HOST=myhost) (PORT=1521)))
(CONNECT_DATA= (SERVICE_NAME=my_db_service_name)))

This connection string does not require a "jdbc:oracle:thin:@" prefix. All characters up
to and including the first at-sign (@) are removed.

oracle.hadoop.loader.connection.password
Type: String
Default Value: Not defined

Description: Password for the connecting user. Oracle recommends that you do not
store your password in clear text. Use an Oracle wallet instead.
oracle.hadoop.loader.connection.sessionTimeZone

Type: String

Default Value: LOCAL

Description: Alters the session time zone for database connections. Valid values are:

s [+ |-]hh:mm: Hours and minutes before or after Coordinated Universal Time
(UTC), such as -5:00 for Eastern Standard Time

s LOCAL: The default time zone of the JVM

» time_zone_region: A valid JVM time zone region, such as EST (for Eastern Standard
Time) or America/New_York

This property also determines the default time zone for input data that is loaded into
TIMESTAMP WITH TIME ZONE and TIMESTAMP WITH LOCAL TIME ZONE database column

types.

oracle.hadoop.loader.connection.tns_admin
Type: String
Default Value: Not defined

Description: File path to a directory on each node of the Hadoop cluster, which
contains SQL*Net configuration files such as sqlnet.ora and tnsnames.ora. Set this
property so that you can use TNS entry names in database connection strings.

You must set this property when using an Oracle wallet as an external password store.
See oracle.hadoop.loader.connection.wallet_location.
oracle.hadoop.loader.connection.tnsEntryName

Type: String

Default Value: Not defined

Description: A TNS entry name defined in the tnsnames.ora file. Use this property
with oracle.hadoop.loader.connection. tns_admin.
oracle.hadoop.loader.connection.url

Type: String

Default Value: Not defined

Description: The URL of the database connection. This property overrides all other
connection properties.

If an Oracle wallet is configured as an external password store, then the property value
must start with the jdbc:oracle:thin:@ driver prefix, and the database connection

3-28 Oracle Big Data Connectors User's Guide

Oracle Loader for Hadoop Configuration Property Reference

string must exactly match the credential in the wallet. See
oracle.hadoop.loader.connection.wallet_location.

The following examples show valid values of connection URLs:
= Oracle Net Format:

jdbc:oracle:thin:@(DESCRIPTION= (ADDRESS_LIST=
(ADDRESS= (PROTOCOL=TCP) (HOST=myhost) (PORT=1521)))
(CONNECT_DATA= (SERVICE_NAME=example_service_name)))

s Oracle Net Format for InfiniBand:

jdbc:oracle:thin:@ (DESCRIPTION= (ADDRESS= (PROTOCOL=SDP)
(HOST=myhost) (PORT=1522))
(CONNECT_DATA= (SERVICE_NAME=example_service_name)))

s TNS Entry Format:
jdbc:oracle:thin:@myTNSEntryName
= Thin Style:

jdbc:oracle:thin:@//myhost:1521/my_db_service_name
jdbc:oracle:thin:user/password@//myhost:1521/my_db_service_name

oracle.hadoop.loader.connection.user
Type: String

Default Value: Not defined

Description: A database user name. When using online database mode, you must set
either this property or oracle.hadoop.loader.connection.wallet_location.

oracle.hadoop.loader.connection.wallet_location
Type: String

Default Value: Not defined

Description: File path to an Oracle wallet directory on each node of the Hadoop
cluster, where the connection credentials are stored.

When using an Oracle wallet, you must also set the following properties:
m oracle.hadoop.loader.connection.tns_admin

m oracle.hadoop.loader.connection.url or
oracle.hadoop.loader.connection. tnsEntryName

oracle.hadoop.loader.defaultDateFormat

Type: String

Default Value: yyyy-MM-dd HH:mm:ss

Description: Parses an input field into a DATE column using a
java.text.SimpleDateformat pattern and the default locale. If the input file requires
different patterns for different fields, then use the manual mapping properties. See
"Manual Mapping" on page 3-15.

oracle.hadoop.loader.enableSorting
Type: Boolean

Default Value: true

Oracle Loader for Hadoop 3-29

Oracle Loader for Hadoop Configuration Property Reference

Description: Controls whether output records within each reducer group are sorted.
Use the oracle.hadoop.loader.sortKey property to identify the columns of the target
table to sort by. Otherwise, Oracle Loader for Hadoop sorts the records by the primary
key.

oracle.hadoop.loader.extTabDirectoryName
Type: String
Default Value: OLH_EXTTAB_DIR

Description: The name of the database directory object for the external table LOCATION
data files. Oracle Loader for Hadoop does not copy data files into this directory; the
file output formats generate a SQL file containing external table DDL, where the
directory name appears.

This property applies only to DelimitedTextOutputFormat and
DataPumpOutputFormat.

oracle.hadoop.loader.input.fieldNames
Type: String

Default Value: F0,F1,F2, ...
Description: A comma-delimited list of names for the input fields.

For the built-in input formats, specify names for all fields in the data, not just the fields
of interest. If an input line has more fields than this property has field names, then the
extra fields are discarded. If a line has fewer fields than this property has field names,
then the extra fields are set to null. See "Mapping Input Fields to Target Table
Columns" on page 3-15 for loading only selected fields.

The names are used to create the Avro schema for the record, so they must be valid
JSON name strings.

oracle.hadoop.loader.input.fieldTerminator
Type: String

Default Value: , (comma)

Description: A character that indicates the end of an input field for
DelimitedTextInputFormat. The value can be either a single character or \uHHHH,
where HHHH is the character's UTF-16 encoding.

oracle.hadoop.loader.input.hive.databaseName
Type: String

Default Value: Not defined

Description: The name of the Hive database where the input table is stored.

oracle.hadoop.loader.input.hive.tableName
Type: String

Default Value: Not defined

Description: The name of the Hive table where the input data is stored.

oracle.hadoop.loader.input.initialFieldEncloser
Type: String

Default Value: Not defined

Description: A character that indicates the beginning of a field. The value can be either
a single character or \uHHHH, where HHHH is the character's UTF-16 encoding. To

3-30 Oracle Big Data Connectors User's Guide

Oracle Loader for Hadoop Configuration Property Reference

restore the default setting (no encloser), enter a zero-length value. A field encloser
cannot equal the terminator or white-space character defined for the input format.

When this property is set, the parser attempts to read each field as an enclosed token
(value) before reading it as an unenclosed token. If the field enclosers are not set, then
the parser reads each field as an unenclosed token.

If you set this property but not
oracle.hadoop.loader.input.trailingFieldEncloser, then the same value is used
for both properties.

oracle.hadoop.loader.input.regexCaselnsensitive
Type: Boolean

Default Value: false

Description: Controls whether pattern matching is case-sensitive. Set to true to ignore
case, so that "string" matches "String", "STRING", "string", "StRiNg", and so forth. By
default, "string" matches only "string".

This property is the same as theinput.regex.case.insensitive property of
org.apache.hadoop.hive.contrib.serde2.RegexSerDe.

oracle.hadoop.loader.input.regexPattern
Type: Text

Default Value: Not defined
Description: The pattern string for a regular expression.

The regular expression must match each text line in its entirety. For example, a correct
regex pattern for input line "a,b,c,"is " ([*,1*), ([*,1*), ([*,1*),". However,
"([~,1*),"is invalid, because the expression is not applied repeatedly to a line of
input text.

RegexInputFormat uses the capturing groups of regular expression matching as fields.
The special group zero is ignored because it stands for the entire input line.

This property is the same as the input.regex property of
org.apache.hadoop.hive.contrib.serde2.RegexSerDe.

See Also: For descriptions of regular expressions and capturing
groups, the entry for java.util.regex in the Java Platform Standard
Edition 6 API Specification at

http://docs.oracle.com/javase/6/docs/api/java/util/regex/Pat

tern.html

oracle.hadoop.loader.input.trailingFieldEncloser
Type: String

Default Value: The value of oracle.hadoop.loader.input.initialFieldEncloser

Description: Identifies a character that marks the end of a field. The value can be
either a single character or \uHHHH, where HHHH is the character's UTF-16
encoding. For no trailing encloser, enter a zero-length value.

A field encloser cannot be the terminator or a white-space character defined for the
input format.

If the trailing field encloser character is embedded in an input field, then the character
must be doubled up to be parsed as literal text. For example, an input field must have
"' (two single quotes) to load ' (one single quote).

Oracle Loader for Hadoop 3-31

Oracle Loader for Hadoop Configuration Property Reference

If you set this property, then you must also set
oracle.hadoop.loader.input.initialFieldEncloser.

oracle.hadoop.loader.loadByPartition
Type: Boolean

Default Value: true

Description: Specifies a partition-aware load. Oracle Loader for Hadoop organizes the
output by partition for all output formats on the Hadoop cluster; this task does not
impact the resources of the database system.

DelimitedTextOutputFormat and DataPumpOutputFormat generate multiple files, and
each file contains the records from one partition. For DelimitedTextOutputFormat, this
property also controls whether the PARTITION keyword appears in the generated
control files for SQL*Loader.

0CIOutputFormat requires partitioned tables. If you set this property to false, then
OCIOutputFormat turns it back on. For the other output formats, you can set
loadByPartition to false, so that Oracle Loader for Hadoop handles a partitioned
table as if it were unpartitioned.

oracle.hadoop.loader.loaderMap.columnNames
Type: String

Default Value: Not specified? Or all columns?

Description: A comma-separated list of column names in the target table, in any order.
The names can be quoted or unquoted. Quoted names begin and end with double
quotes (") and are used exactly as entered. Unquoted names are converted to upper
case.

You must set oracle.hadoop.loader.loaderMap.targetTable, or this property is
ignored. You can optionally set oracle.hadoop.loader.loaderMap.column_
name.field and oracle.hadoop.loader.loaderMap.column_name.format.

oracle.hadoop.loader.loaderMap.column_name.field
Type: String
Default Value: Normalized column name

Description: The name of a field that contains Avro records, which is mapped to the
column identified in the property name. The column name can be quoted or unquoted.
A quoted name begins and ends with double quotes (") and is used exactly as entered.
An unquoted name is converted to upper case. Optional.

You must set oracle.hadoop.loader.loaderMap.columnNames, or this property is
ignored.

oracle.hadoop.loader.loaderMap.column_name.format

Type: String

Default Value: Not defined

Description: Specifies the data format of the data being loaded into the column
identified in the property name. Use a java. text.SimpleDateformat pattern for a date
format or regular expression patterns for text. Optional.

You must set oracle.hadoop.loader.loaderMap.columnNames, or this property is
ignored.

oracle.hadoop.loader.loaderMap.targetTable
Type: String

3-32 Oracle Big Data Connectors User's Guide

Oracle Loader for Hadoop Configuration Property Reference

Default Value: Not defined

Description: A schema-qualified name for the table to be loaded. This property takes
precedence over oracle.hadoop.loader.loaderMapFile.

To load a subset of columns, set the oracle.hadoop.loader.loaderMap.columnNames
property. With columnNames, you can optionally set
oracle.hadoop.loader.loaderMap.column_name.field to specify the names of the
fields that are mapped to the columns, and
oracle.hadoop.loader.loaderMap.column_name.format to specify the format of the
data in those fields. If all the columns of a table will be loaded, and the input field
names match the database column names, then you do not need to set columnNames.

oracle.hadoop.loader.loaderMapFile
Loader maps are deprecated in Release 2.3. The oracle.hadoop.loader.loaderMap. *
configuration properties replace loader map files. See "Manual Mapping" on page 3-15.

oracle.hadoop.loader.logBadRecords

Type: Boolean

Default Value: false

Description: Controls whether Oracle Loader for Hadoop logs bad records to a file.
This property applies only to records rejected by input formats and mappers. It does
not apply to errors encountered by the output formats or by the sampling feature.
oracle.hadoop.loader.log4j.propertyPrefix

Type: String

Default Value: 1og4j.logger.oracle.hadoop.loader

Description: Identifies the prefix used in Apache log4j properties loaded from its
configuration file.

Oracle Loader for Hadoop enables you to specify log4j properties in the hadoop
command using the -conf and -D options. For example:

-D log4j.logger.oracle.hadoop.loader.OralLoader=DEBUG
-D log4j.logger.oracle.hadoop.loader.metadata=INFO

All configuration properties starting with this prefix are loaded into log4j. They
override the settings for the same properties that log4j loaded from
${log4j.configuration}. The overrides apply to the Oracle Loader for Hadoop job driver,
and its map and reduce tasks.

The configuration properties are copied to log4j with RAW values; any variable
expansion is done in the context of log4j. Any configuration variables to be used in the
expansion must also start with this prefix.

oracle.hadoop.loader.olh_home
Type: String

Default Value: Value of the OLH_HOME environment variable

Description: The path of the Oracle Loader for Hadoop home directory on the node
where you start the OraLoader job. This path identifies the location of the required
libraries.

oracle.hadoop.loader.olhcachePath
Type: String

Default Value: $ {mapred.output.dir}/../olhcache

Oracle Loader for Hadoop 3-33

Oracle Loader for Hadoop Configuration Property Reference

Description: Identifies the full path to an HDFS directory where Oracle Loader for
Hadoop can create files that are loaded into the MapReduce distributed cache.

The distributed cache is a facility for caching large, application-specific files and
distributing them efficiently across the nodes in a cluster.

See Also: The description of
org.apache.hadoop.filecache.DistributedCache in the Java
documentation at

http://hadoop.apache.org/

oracle.hadoop.loader.output.dirpathBufsize
Type: Integer

Default Value: 131072 (128 KB)

Description: Sets the size in bytes of the direct path stream buffer for
OCIOutputFormat. Values are rounded up to the next multiple of 8 KB.

oracle.hadoop.loader.output.escapeEnclosers
Type: Boolean
Default Value: false

Description: Controls whether the embedded trailing encloser character is handled as
literal text (that is, escaped). Set this property to true when a field may contain the
trailing enclosure character as part of the data value. See
oracle.hadoop.loader.output.trailingFieldEncloser.

oracle.hadoop.loader.output.fieldTerminator
Type: String
Default Value: , (comma)

Description: A character that indicates the end of an output field for
DelimitedTextInputFormat. The value can be either a single character or \uHHHH,
where HHHH is the character's UTF-16 encoding.

oracle.hadoop.loader.output.granuleSize

Type: Integer

Default Value: 10240000

Description: The granule size in bytes for generated Data Pump files.

A granule determines the work load for a parallel process (PQ slave) when loading a
file through the ORACLE_DATAPUMP access driver.

See Also: Oracle Database Utilities for more information about the
ORACLE_DATAPUMP access driver.

oracle.hadoop.loader.output.initialFieldEncloser
Type: String

Default Value: Not defined

Description: A character generated in the output to identify the beginning of a field.
The value must be either a single character or \uHHHH, where HHHH is the
character's UTF-16 encoding. A zero-length value means that no enclosers are
generated in the output (default value).

3-34 Oracle Big Data Connectors User's Guide

Oracle Loader for Hadoop Configuration Property Reference

Use this property when a field may contain the value of
oracle.hadoop.loader.output.fieldTerminator. If a field may also contain the value
of oracle.hadoop.loader.output.trailingFieldEncloser, then set
oracle.hadoop.loader.output.escapeEnclosers to true.

If you set this property, then you must also set
oracle.hadoop.loader.output.trailingFieldEncloser.

oracle.hadoop.loader.output.trailingFieldEncloser
Type: String

Default Value: Value of oracle.hadoop.loader.output.initialFieldEncloser

Description: A character generated in the output to identify the end of a field. The
value must be either a single character or \uHHHH, where HHHH is the character's
UTF-16 encoding. A zero-length value means that there are no enclosers (default
value).

Use this property when a field may contain the value of
oracle.hadoop.loader.output.fieldTerminator. If a field may also contain the value
of oracle.hadoop.loader.output.trailingFieldEncloser, then set
oracle.hadoop.loader.output.escapeEnclosers to true.

If you set this property, then you must also set
oracle.hadoop.loader.output.initialFieldEncloser.

oracle.hadoop.loader.rejectLimit
Type: Integer

Default Value: 1000

Description: The maximum number of rejected or skipped records allowed before the
job stops running. A negative value turns off the reject limit and allows the job to run
to completion.

If mapred.map. tasks.speculative.execution is true (the default), then the number
of rejected records may be inflated temporarily, causing the job to stop prematurely.

Input format errors do not count toward the reject limit because they are irrecoverable
and cause the map task to stop. Errors encountered by the sampling feature or the
online output formats do not count toward the reject limit either.

oracle.hadoop.loader.sampler.enableSampling
Type: Boolean
Default Value: true

Description: Controls whether the sampling feature is enabled. Set this property to
false to disable sampling.

Even when enableSampling is set to true, the loader automatically disables sampling
if it is unnecessary, or if the loader determines that a good sample cannot be made. For
example, the loader disables sampling if the table is not partitioned, the number of
reducer tasks is less than two, or there is too little input data to compute a good load
balance. In these cases, the loader returns an informational message.

oracle.hadoop.loader.sampler.hintMaxSplitSize
Type: Integer

Default Value: 1048576 (1 MB)

Oracle Loader for Hadoop 3-35

Oracle Loader for Hadoop Configuration Property Reference

Description: Sets the Hadoop mapred.max.split.size property for the sampling
process; the value of mapred.max.split.size does not change for the job
configuration. A value less than 1 is ignored.

Some input formats (such as FileInputFormat) use this property as a hint to
determine the number of splits returned by getSplits. Smaller values imply that more
chunks of data are sampled at random, which results in a better sample.

Increase this value for data sets with tens of terabytes of data, or if the input format
getSplits method throws an out-of-memory error.

Although large splits are better for I/O performance, they are not necessarily better for
sampling. Set this value small enough for good sampling performance, but no smaller.
Extremely small values can cause inefficient I/O performance, and can cause
getSplits to run out of memory by returning too many splits.

The org.apache.hadoop.mapreduce.lib.input.FileInputFormat method always
returns splits at least as large as the minimum split size setting, regardless of the value
of this property.

oracle.hadoop.loader.sampler.hintNumMapTasks
Type: Integer
Default Value: 100

Description: Sets the value of the Hadoop mapred.map. tasks configuration property
for the sampling process; the value of mapred.map. tasks does not change for the job
configuration. A value less than 1 is ignored.

Some input formats (such as DBInputFormat) use this property as a hint to determine
the number of splits returned by the getSplits method. Higher values imply that
more chunks of data are sampled at random, which results in a better sample.

Increase this value for data sets with more than a million rows, but remember that
extremely large values can cause getSplits to run out of memory by returning too
many splits.

oracle.hadoop.loader.sampler.loadCl

Type: Decimal

Default Value: 0.95

Description: The statistical confidence indicator for the maximum reducer load factor.

This property accepts values greater than or equal to 0.5 and less than 1 (0.5 <= value
< 1). A value less than 0.5 resets the property to the default value. Typical values are
0.90,0.95,and 0.99.

See oracle.hadoop.loader.sampler.maxLoadFactor.

oracle.hadoop.loader.sampler.maxHeapBytes
Type: Integer

Default Value: -1

Description: Specifies in bytes the maximum amount of memory available to the
sampler.

Sampling stops when one of these conditions is true:

s The sampler has collected the minimum number of samples required for load
balancing.

3-36 Oracle Big Data Connectors User's Guide

Oracle Loader for Hadoop Configuration Property Reference

s The percent of sampled data exceeds
oracle.hadoop.loader.sampler.maxSamplesPct.

s The number of sampled bytes exceeds
oracle.hadoop.loader.sampler.maxHeapBytes. This condition is not imposed
when the property is set to a negative value.

oracle.hadoop.loader.sampler.maxLoadFactor
Type: Float
Default Value: 0.05 (56%)

Description: The maximum acceptable load factor for a reducer. A value of 0.05
indicates that reducers can be assigned up to 5% more data than their ideal load.

This property accepts values greater than 0. A value less than or equal to 0 resets the
property to the default value. Typical values are 0.05 and 0. 1.

In a perfectly balanced load, every reducer is assigned an equal amount of work (or
load). The load factor is the relative overload for each reducer, calculated as (assigned_
load - ideal_load)/ideal_load. If load balancing is successful, the job runs within the
maximum load factor at the specified confidence.

See oracle.hadoop.loader.sampler.loadCI.

oracle.hadoop.loader.sampler.maxSamplesPct
Type: Float

Default Value: 0.01 (1%)

Description: Sets the maximum sample size as a fraction of the number of records in
the input data. A value of 0.05 indicates that the sampler never samples more than 5%
of the total number of records.

This property accepts a range of 0 to 1 (0% to 100%). A negative value disables it.
Sampling stops when one of these conditions is true:

» The sampler has collected the minimum number of samples required for load
balancing, which can be fewer than the number set by this property.

= The percent of sampled data exceeds
oracle.hadoop.loader.sampler.maxSamplesPct.

s The number of sampled bytes exceeds
oracle.hadoop.loader.sampler.maxHeapBytes. This condition is not imposed
when the property is set to a negative value.

oracle.hadoop.loader.sampler.minSplits
Type: Integer

Default Value: 5

Description: The minimum number of input splits that the sampler reads from before
it makes any evaluation of the stopping condition. If the total number of input splits is
less than minSplits, then the sampler reads from all the input splits.

A number less than or equal to 0 is the same as a value of 1.

oracle.hadoop.loader.sampler.numThreads
Type: Integer

Default Value: 5

Oracle Loader for Hadoop 3-37

Oracle Loader for Hadoop Configuration Property Reference

Description: The number of sampler threads. A higher number of threads allows
higher concurrency in sampling. A value of 1 disables multithreading for the sampler.

Set the value based on the processor and memory resources available on the node
where you start the Oracle Loader for Hadoop job.

oracle.hadoop.loader.sortKey
Type: String

Default Value: Not defined

Description: A comma-delimited list of column names that forms a key for sorting
output records within a reducer group.

The column names can be quoted or unquoted identifiers:
= A quoted identifier begins and ends with double quotation marks (").

= Anunquoted identifier is converted to uppercase before use.

oracle.hadoop.loader.tableMetadataFile
Type: String

Default Value: Not defined

Description: Path to the target table metadata file. Set this property when running in
offline database mode.

Use the file:// syntax to specify a local file, for example:
file:///home/jdoe/metadata.xml

To create the table metadata file, run the OraLoaderMetadata utility. See
"OraLoaderMetadata Utility" on page 3-9.

oracle.hadoop.loader.targetTable
Deprecated. Use oracle.hadoop.loader.loaderMap.targetTable.

Oracle NoSQL Database Configuration Properties

oracle.kv.kvstore
Type: String

Default Value: Not defined

Description: The name of the KV store with the source data.

oracle.kv.hosts
Type: String

Default Value: Not defined

Description: An array of one or more hostname:port pairs that identify the hosts in the
KV store with the source data. Separate multiple pairs with commas.

oracle.kv.batchSize
Type: Key

Default Value: Not defined

Description: The desired number of keys for KVAvroInputFormatto fetch during each
network round trip. A value of zero (0) sets the property to a default value.

3-38 Oracle Big Data Connectors User's Guide

Oracle Loader for Hadoop Configuration Property Reference

oracle.kv.parentKey
Type: String

Default Value: Not defined

Description: Restricts the returned values to only the child key-value pairs of the
specified key. A major key path must be a partial path, and a minor key path must be
empty. A null value (the default) does not restrict the output, and so
KVAvroInputFormat returns all keys in the store.

oracle.kv.subRange
Type: KeyRange

Default Value: Not defined

Description: Further restricts the returned values to a particular child under the parent
key specified by oracle.kv.parentKey.

oracle.kv.depth
Type: Depth

Default Value: PARENT AND_DESCENDENTS

Description: Restricts the returned values to a particular hierarchical depth under the
value of oracle.kv.parentKey. The following keywords are valid values:

» CHILDREN_ONLY: Returns the children, but not the specified parent.
= DESCENDANTS_ONLY: Returns all descendants, but not the specified parent.
= PARENT AND_CHILDREN: Returns the children and the parent.

= PARENT AND_DESCENDANTS: Returns all descendants and the parent.

oracle.kv.consistency
Type: Consistency

Default Value: NONE_REQUIRED

Description: The consistency guarantee for reading child key-value pairs. The
following keywords are valid values:

= ABSOLUTE: Requires the master to service the transaction so that consistency is
absolute.

= NONE_REQUIRED: Allows replicas to service the transaction, regardless of the state of
the replicas relative to the master.

oracle.kv.timeout
Type: Long

Default Value:

Description: Sets a maximum time interval in milliseconds for retrieving a selection of
key-value pairs. A value of zero (0) sets the property to its default value.

oracle.kv.formatterClass
Type: String

Default Value: Not defined

Description: Specifies the name of a class that implements the AvroFormatter
interface to format KeyValueVersion instances into Avro IndexedRecord strings.

Because the Avro records from Oracle NoSQL Database pass directly to Oracle Loader
for Hadoop, the NoSQL keys are not available for mapping into the target Oracle

Oracle Loader for Hadoop 3-39

Third-Party Licenses for Bundled Software

Database table. However, the formatter class receives both the NoSQL key and value,
enabling the class to create and return a new Avro record that contains both the value
and key, which can be passed to Oracle Loader for Hadoop.

Third-Party Licenses for Bundled Software
Oracle Loader for Hadoop installs the following third-party products:
= Apache Avro
= Apache Commons Mathematics Library
s Jackson JSON Processor

Oracle Loader for Hadoop includes Oracle 11g Release 2 (11.2) client libraries. For
information about third party products included with Oracle Database 11g Release 2
(11.2), refer to Oracle Database Licensing Information.

Unless otherwise specifically noted, or as required under the terms of the third
party license (e.g., LGPL), the licenses and statements herein, including all
statements regarding Apache-licensed code, are intended as notices only.

Apache Licensed Code

The following is included as a notice in compliance with the terms of the Apache 2.0
License, and applies to all programs licensed under the Apache 2.0 license:

You may not use the identified files except in compliance with the Apache License,
Version 2.0 (the "License.")

You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
A copy of the license is also reproduced below.

Unless required by applicable law or agreed to in writing, software distributed under
the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
CONDITIONS OF ANY KIND, either express or implied.

See the License for the specific language governing permissions and limitations under
the License.

Apache License
Version 2.0, January 2004

http://www.apache.org/licenses/
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
1. Definitions

"License" shall mean the terms and conditions for use, reproduction, and
distribution as defined by Sections 1 through 9 of this document.

"Licensor" shall mean the copyright owner or entity authorized by the copyright
owner that is granting the License.

"Legal Entity" shall mean the union of the acting entity and all other entities that
control, are controlled by, or are under common control with that entity. For the
purposes of this definition, "control” means (i) the power, direct or indirect, to
cause the direction or management of such entity, whether by contract or

3-40 Oracle Big Data Connectors User's Guide

Third-Party Licenses for Bundled Software

otherwise, or (ii) ownership of fifty percent (50%) or more of the outstanding
shares, or (iii) beneficial ownership of such entity.

"You" (or "Your") shall mean an individual or Legal Entity exercising permissions
granted by this License.

"Source" form shall mean the preferred form for making modifications, including
but not limited to software source code, documentation source, and configuration
files.

"Object" form shall mean any form resulting from mechanical transformation or
translation of a Source form, including but not limited to compiled object code,
generated documentation, and conversions to other media types.

"Work" shall mean the work of authorship, whether in Source or Object form,
made available under the License, as indicated by a copyright notice that is
included in or attached to the work (an example is provided in the Appendix
below).

"Derivative Works" shall mean any work, whether in Source or Object form, that is
based on (or derived from) the Work and for which the editorial revisions,
annotations, elaborations, or other modifications represent, as a whole, an original
work of authorship. For the purposes of this License, Derivative Works shall not
include works that remain separable from, or merely link (or bind by name) to the
interfaces of, the Work and Derivative Works thereof.

"Contribution" shall mean any work of authorship, including the original version
of the Work and any modifications or additions to that Work or Derivative Works
thereof, that is intentionally submitted to Licensor for inclusion in the Work by the
copyright owner or by an individual or Legal Entity authorized to submit on
behalf of the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent to the
Licensor or its representatives, including but not limited to communication on
electronic mailing lists, source code control systems, and issue tracking systems
that are managed by, or on behalf of, the Licensor for the purpose of discussing
and improving the Work, but excluding communication that is conspicuously
marked or otherwise designated in writing by the copyright owner as "Not a
Contribution."

"Contributor” shall mean Licensor and any individual or Legal Entity on behalf of
whom a Contribution has been received by Licensor and subsequently
incorporated within the Work.

Grant of Copyright License. Subject to the terms and conditions of this License,
each Contributor hereby grants to You a perpetual, worldwide, non-exclusive,
no-charge, royalty-free, irrevocable copyright license to reproduce, prepare
Derivative Works of, publicly display, publicly perform, sublicense, and distribute
the Work and such Derivative Works in Source or Object form.

Grant of Patent License. Subject to the terms and conditions of this License, each
Contributor hereby grants to You a perpetual, worldwide, non-exclusive,
no-charge, royalty-free, irrevocable (except as stated in this section) patent license
to make, have made, use, offer to sell, sell, import, and otherwise transfer the
Work, where such license applies only to those patent claims licensable by such
Contributor that are necessarily infringed by their Contribution(s) alone or by
combination of their Contribution(s) with the Work to which such Contribution(s)
was submitted. If You institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work or a Contribution
incorporated within the Work constitutes direct or contributory patent

Oracle Loader for Hadoop 3-41

Third-Party Licenses for Bundled Software

infringement, then any patent licenses granted to You under this License for that
Work shall terminate as of the date such litigation is filed.

4. Redistribution. You may reproduce and distribute copies of the Work or
Derivative Works thereof in any medium, with or without modifications, and in
Source or Object form, provided that you meet the following conditions:

a. You must give any other recipients of the Work or Derivative Works a copy of
this License; and

b. You must cause any modified files to carry prominent notices stating that You
changed the files; and

¢. You must retain, in the Source form of any Derivative Works that You
distribute, all copyright, patent, trademark, and attribution notices from the
Source form of the Work, excluding those notices that do not pertain to any
part of the Derivative Works; and

d. If the Work includes a "NOTICE" text file as part of its distribution, then any
Derivative Works that You distribute must include a readable copy of the
attribution notices contained within such NOTICE file, excluding those notices
that do not pertain to any part of the Derivative Works, in at least one of the
following places: within a NOTICE text file distributed as part of the
Derivative Works; within the Source form or documentation, if provided along
with the Derivative Works; or, within a display generated by the Derivative
Works, if and wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and do not modify the
License. You may add Your own attribution notices within Derivative Works
that You distribute, alongside or as an addendum to the NOTICE text from the
Work, provided that such additional attribution notices cannot be construed as
modifying the License.

You may add Your own copyright statement to Your modifications and may
provide additional or different license terms and conditions for use, reproduction,
or distribution of Your modifications, or for any such Derivative Works as a whole,
provided Your use, reproduction, and distribution of the Work otherwise complies
with the conditions stated in this License.

5. Submission of Contributions. Unless You explicitly state otherwise, any
Contribution intentionally submitted for inclusion in the Work by You to the
Licensor shall be under the terms and conditions of this License, without any
additional terms or conditions. Notwithstanding the above, nothing herein shall
supersede or modify the terms of any separate license agreement you may have
executed with Licensor regarding such Contributions.

6. Trademarks. This License does not grant permission to use the trade names,
trademarks, service marks, or product names of the Licensor, except as required
for reasonable and customary use in describing the origin of the Work and
reproducing the content of the NOTICE file.

7. Disclaimer of Warranty. Unless required by applicable law or agreed to in
writing, Licensor provides the Work (and each Contributor provides its
Contributions) on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS
OF ANY KIND, either express or implied, including, without limitation, any
warranties or conditions of TITLE, NON-INFRINGEMENT,
MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. You are
solely responsible for determining the appropriateness of using or redistributing
the Work and assume any risks associated with Your exercise of permissions under
this License.

3-42 Oracle Big Data Connectors User's Guide

Third-Party Licenses for Bundled Software

8. Limitation of Liability. In no event and under no legal theory, whether in tort
(including negligence), contract, or otherwise, unless required by applicable law
(such as deliberate and grossly negligent acts) or agreed to in writing, shall any
Contributor be liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a result of this
License or out of the use or inability to use the Work (including but not limited to
damages for loss of goodwill, work stoppage, computer failure or malfunction, or
any and all other commercial damages or losses), even if such Contributor has
been advised of the possibility of such damages.

9. Accepting Warranty or Additional Liability. While redistributing the Work or
Derivative Works thereof, You may choose to offer, and charge a fee for, acceptance
of support, warranty, indemnity, or other liability obligations and/or rights
consistent with this License. However, in accepting such obligations, You may act
only on Your own behalf and on Your sole responsibility, not on behalf of any
other Contributor, and only if You agree to indemnify, defend, and hold each
Contributor harmless for any liability incurred by, or claims asserted against, such
Contributor by reason of your accepting any such warranty or additional liability.

END OF TERMS AND CONDITIONS

APPENDIX: How to apply the Apache License to your work

To apply the Apache License to your work, attach the following boilerplate notice,
with the fields enclosed by brackets "[]" replaced with your own identifying
information. (Do not include the brackets!) The text should be enclosed in the
appropriate comment syntax for the file format. We also recommend that a file or class
name and description of purpose be included on the same "printed page" as the
copyright notice for easier identification within third-party archives.

Copyright [yyyy] [name of copyright owner]

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this
file except in compliance with the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under
the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.

This product includes software developed by The Apache Software Foundation
(http://www.apache.org/) (listed below):

Apache Avro 1.7.3

Licensed under the Apache License, Version 2.0 (the "License"); you may not use
Apache Avro except in compliance with the License. You may obtain a copy of the
License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under
the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.

Oracle Loader for Hadoop 3-43

Third-Party Licenses for Bundled Software

Apache Commons Mathematics Library 2.2
Copyright 2001-2011 The Apache Software Foundation
Licensed under the Apache License, Version 2.0 (the "License"); you may not use the

Apache Commons Mathematics library except in compliance with the License. You
may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under
the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.

Jackson JSON 1.8.8

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this
library except in compliance with the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under
the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.

3-44 Oracle Big Data Connectors User's Guide

4

Oracle Data Integrator Application Adapter for

Introduction

Concepts

Hadoop

This chapter describes how to use the knowledge modules in Oracle Data Integrator
(ODI) Application Adapter for Hadoop. It contains the following sections:

= Introduction

» Setting Up the Topology

»s Setting Up an Integration Project

» Creating an Oracle Data Integrator Model from a Reverse-Engineered Hive Model

= Designing the Interface

See Also: Oracle Fusion Middleware Application Adapters Guide for
Oracle Data Integrator

Apache Hadoop is designed to handle and process data that is typically from data
sources that are nonrelational and data volumes that are beyond what is handled by
relational databases.

Oracle Data Integrator (ODI) Application Adapter for Hadoop enables data
integration developers to integrate and transform data easily within Hadoop using
Oracle Data Integrator. Employing familiar and easy-to-use tools and preconfigured
knowledge modules (KMs), the application adapter provides the following
capabilities:

= Loading data into Hadoop from the local file system and HDFS
s Performing validation and transformation of data within Hadoop

s Loading processed data from Hadoop to an Oracle database for further processing
and generating reports

Knowledge modules (KMs) contain the information needed by Oracle Data Integrator
to perform a specific set of tasks against a specific technology. An application adapter
is a group of knowledge modules. Thus, Oracle Data Integrator Application Adapter
for Hadoop is a group of knowledge modules for accessing data stored in Hadoop.

Typical processing in Hadoop includes data validation and transformations that are
programmed as MapReduce jobs. Designing and implementing a MapReduce job
requires expert programming knowledge. However, when you use Oracle Data

Oracle Data Integrator Application Adapter for Hadoop 4-1

Introduction

Integrator and Oracle Data Integrator Application Adapter for Hadoop, you do not
need to write MapReduce jobs. Oracle Data Integrator uses Apache Hive and the Hive
Query Language (HiveQL), a SQL-like language for implementing MapReduce jobs.

When you implement a big data processing scenario, the first step is to load the data
into Hadoop. The data source is typically in the local file system, HDFS, Hive tables, or
external Hive tables.

After the data is loaded, you can validate and transform it by using HiveQL like you
use SQL. You can perform data validation (such as checking for NULLS and primary
keys), and transformations (such as filtering, aggregations, set operations, and derived
tables). You can also include customized procedural snippets (scripts) for processing
the data.

When the data has been aggregated, condensed, or processed into a smaller data set,
you can load it into an Oracle database for further processing and analysis. Oracle
Loader for Hadoop is recommended for optimal loading into an Oracle database.

Knowledge Modules

Oracle Data Integrator provides the knowledge modules (KMs) described in Table 4-1
for use with Hadoop.

Table 4-1 Oracle Data Integrator Application Adapter for Hadoop Knowledge Modules

KM Name Description Source Target
IKM File to Hive Loads data from local and HDFS files into File system Hive
(Load Data) Hive tables. It provides options for better

performance through Hive partitioning and
fewer data movements.

This knowledge module supports wildcards

*?).

IKM Hive Control Integrates data into a Hive target table in Hive Hive
Append truncate/insert (append) mode. Data can be

controlled (validated). Invalid data is

isolated in an error table and can be

recycled.

IKM Hive Transform Integrates data into a Hive target table after Hive Hive
the data has been transformed by a
customized script such as Perl or Python

IKM File-Hive to Integrates data from an HDFS file or Hive File system or Oracle
Oracle (OLH) source into an Oracle database target using Hive Database
Oracle Loader for Hadoop, Oracle SQL
Connector for HDFS, or both.

CKM Hive Validates data against constraints NA Hive
RKM Hive Reverse engineers Hive tables Hive NA
metadata

Security

For security information for Oracle Data Integrator, see the Oracle Fusion Middleware
Developer’s Guide for Oracle Data Integrator.

4-2 Oracle Big Data Connectors User's Guide

Setting Up the Topology

Setting Up the Topology

To set up the topology in Oracle Data Integrator, you identify the data server and the
physical and logical schemas that are used to store the file system and Hive
information.

This section contains the following topics:

» Setting Up File Data Sources

= Setting Up Hive Data Sources

= Setting Up the Oracle Data Integrator Agent to Execute Hadoop Jobs

s Configuring Oracle Data Integrator Studio for Executing Hadoop Jobs on the Local
Agent

Note: Many of the environment variables described in the following
sections are already configured for Oracle Big Data Appliance. See the
configuration script at /opt/oracle/odiagent-version /agent_
standalone/oracledi/agent/bin/HadoopEnvSetup.sh

Setting Up File Data Sources

In the Hadoop context, there is a distinction between files in Hadoop Distributed File
System (HDEFS) and local files (files outside of HDEFS).

To define a data source:

1. Create a DataServer object under File technology.

2. Create a Physical Schema object for every directory to be accessed.
3. Create a Logical Schema object for every directory to be accessed.
4. Create a Model for every Logical Schema.
5

Create one or more data stores for each different type of file and wildcard name
pattern.

6. For HDFS files, create a DataServer object under File technology by entering the
HDFS name node in the field JDBC URL. For example:

hdfs://bdalnodell.example.com:8020

Note: No dedicated technology is defined for HDFS files.

Setting Up Hive Data Sources

The following steps in Oracle Data Integrator are required for connecting to a Hive
system. Oracle Data Integrator connects to Hive by using JDBC.

Prerequisites

The Hive technology must be included in the standard Oracle Data Integrator
technologies. If it is not, then import the technology in INSERT_UPDATE mode from the
xml-reference directory.

You must add all Hive-specific flex fields. For pre-11.1.1.6.0 repositories, the flex fields
are added during the repository upgrade process.

Oracle Data Integrator Application Adapter for Hadoop 4-3

Setting Up the Topology

To set up a Hive data source:

1. Ensure that the following environment variables are set, and note their values. The
following list shows typical values, although your installation may be different:

s $HIVE_HOME: /usr/lib/hive

= $HADOOP_HOME: /usr/lib/hadoop (contains configuration files such as
core-site.xml)

s $OSCH_HOME: /opt/oracle/orahdfs-version

2. Open ~/.odi/oracledi/userlib/additional_path.txt in a text editor and add the
paths listed in Table 4-2. Enter the full path obtained in Step 1 instead of the
variable name.

This step enables ODI Studio to access the JAR files.

Table 4-2 JAR File Paths
Description CDH4 Path CDH3 Path

Hive JAR Files $HIVE_HOME/lib/* jar $HIVE_HOME/* jar

Hadoop Client JAR Files $HADOOP_HOME/client/*jar $HADOOP_
HOME /hadoop-*-core* jar!

$HADOOP_
HOME/ hadoop—’*—’cools*.jar1

Hadoop Configuration $HADOOP_HOME $HADOOP_HOME
Directory
Oracle SQL Connector for ~ $§OSCH_HOME /jlib/* jar $OSCH_HOME /jlib/* jar

HDFS JAR Files (optional)

1 Replace the stars (*) with the full file name.

3. Ensure that the Hadoop configuration directory is in the ODI class path.

The Hadoop configuration directory contains files such as core-default.xml,
core-site.xml, and hdfs-site.xml.

4. Create a DataServer object under Hive technology.
5. Set the following locations under JDBC:
JDBC Diriver: org.apache.hadoop.hive. jdbc.HiveDriver
JDBC URL: for example, jdbc:hive://BDA:10000/default
6. Set the following under Flexfields:
Hive Metastore URISs: for example, thrift://BDA:10000
7. Create a Physical Default Schema.

As of Hive 0.7.0, no schemas or databases are supported. Only Default is
supported. Enter default in both schema fields of the physical schema definition.

8. Ensure that the Hive server is up and running.

9. Test the connection to the DataServer.

10. Create a Logical Schema object.

11. Create at least one Model for the LogicalSchema.

12. Import RKM Hive as a global knowledge module or into a project.

4-4 Oracle Big Data Connectors User's Guide

Setting Up the Topology

13. Create a new model for Hive Technology pointing to the logical schema.

14. Perform a custom reverse-engineering operation using RKM Hive.

At the end of this process, the Hive DataModel contains all Hive tables with their
columns, partitioning, and clustering details stored as flex field values.

Setting Up the Oracle Data Integrator Agent to Execute Hadoop Jobs

After setting up an Oracle Data Integrator agent, configure it to work with Oracle Data
Integrator Application Adapter for Hadoop.

Note: Many file names contain the version number. When you see a
star (*) in a file name, check your installation and enter the full file
name.

To configure the Oracle Data Integrator agent:

1.

Install Hadoop on your Oracle Data Integrator agent computer. Ensure that the
HADOOP_HOME environment variable is set.

For Oracle Big Data Appliance, see the Oracle Big Data Appliance Software User’s
Guide for instructions for setting up a remote Hadoop client.

Install Hive on your Oracle Data Integrator agent computer. Ensure that the HIVE_
HOME environment variable is set.

Ensure that the Hadoop configuration directory is in the ODI class path.

The Hadoop configuration directory contains files such as core-default.xml,
core-site.xml, and hdfs-site.xml.

Add paths to ODI_ADDITIONAL_CLASSPATH, so that the ODI agent can access the
JAR files. If you are not using Oracle SQL Connector for HDFS, then omit $OSCH_
HOME from the setting.

Note: In these commands, SHADOOP_CONF points to the directory
containing the Hadoop configuration files. This directory is often the
same as $HADOOP_HOME.

s For CDH4, use a command like the following;:
ODI_ADDITIONAL_CLASSPATH=$HIVE_HOME/lib/'*':$HADOOP_HOME/client/'*':$0SCH_
HOME/j1lib/'*':$HADOOP_CONF

= For CDHS3, use a command like the following, replacing hadoop-*-core* jar

and hadoop-*-tools*.jar with the full path names:
ODI_ADDITIONAL_CLASSPATH=$HIVE_HOME/lib/'*' :$HADOOP_
HOME/hadoop-*-core* . jar: SHADOOP_HOME/hadoop-*-tools*.jar:SOSCH_
HOME/jlib/'*':SHADOOP_CONF
Set environment variable ODI_HIVE_SESSION_JARS to include Hive Regex SerDe:
ODI_HIVE_SESSION_JARS=$HIVE_HOME/lib/hive-contrib-*.jar
Include other JAR files as required, such as custom SerDes JAR files. These JAR

files are added to every Hive JDBC session and thus are added to every Hive
MapReduce job.

Oracle Data Integrator Application Adapter for Hadoop 4-5

Setting Up an Integration Project

Set environment variable HADOOP_CLASSPATH:

HADOOP_CLASSPATH=$HIVE_HOME/lib/hive-metastore-*.jar:SHIVE_
HOME/lib/libthrift.jar:$HIVE_HOME/lib/libfb*.jar:S$HIVE_
HOME/lib/hive-common-*.jar:SHIVE_HOME/lib/hive-exec-*.jar.

This setting enables the Hadoop script to start Hive MapReduce jobs.

To use Oracle Loader for Hadoop:

1.

Install Oracle Loader for Hadoop on your Oracle Data Integrator agent system.
See "Installing Oracle Loader for Hadoop" on page 1-12.

Set environment variable OLH_HOME.

Optionally, set environment variable ODI_OLH_JARS. You must list any JAR files
required for custom input formats, Hive, Hive SerDes, and so forth, used by
Oracle Loader for Hadoop. Do not include the Oracle Loader for Hadoop JAR
files.

For example, for extracting data from Hive, you need the extra jars listed in
"Specifying Hive Input Format JAR Files" on page 3-22. Enter valid file names for
your installation.

SHIVE_HOME/lib/hive-metastore-*.jar,
SHIVE_HOME/lib/libthrift.jar,
SHIVE_HOME/1ib/libfb*.jar

Add paths to HADOOP_CLASSPATH:

HADOOP_CLASSPATH=$OLH_HOME/jlib/'*':$HADOOP_CLASSPATH

Set environment variable ODI_HIVE_SESSION_JARS to include Hive Regex SerDe:

ODI_HIVE_SESSION_JARS=$HIVE_HOME/lib/hive-contrib-*.jar

Include other JAR files as required, such as custom SerDes JAR files. These JAR
files are added to every Hive JDBC session and thus are added to every Hive
MapReduce job.

To use Oracle SQL Connector for HDFS (OLH_OUTPUT_MODE=DP_OSCH or OSCH), you
must first install it. See "Oracle SQL Connector for Hadoop Distributed File
System Setup" on page 1-4.

Configuring Oracle Data Integrator Studio for Executing Hadoop Jobs on the Local

Agent

For executing Hadoop jobs on the local agent of an Oracle Data Integrator Studio
installation, follow the configuration steps in the previous section with the following
change: Copy JAR files into the Oracle Data Integrator userlib directory instead of the
drivers directory.

Setting Up an Integration Project

Setting up a project follows the standard procedures. See the Oracle Fusion Middleware
Developer’s Guide for Oracle Data Integrator.

Import the following KMs into Oracle Data Integrator project:

IKM File to Hive (Load Data)
IKM Hive Control Append

4-6 Oracle Big Data Connectors User's Guide

Creating an Oracle Data Integrator Model from a Reverse-Engineered Hive Model

» IKM Hive Transform

» IKM File-Hive to Oracle (OLH)
= CKM Hive

= RKM Hive

Creating an Oracle Data Integrator Model from a Reverse-Engineered Hive
Model

This section contains the following topics:
= Creating a Model

= Reverse Engineering Hive Tables

Creating a Model

To create a model that is based on the technology hosting Hive and on the logical
schema created when you configured the Hive connection, follow the standard
procedure described in the Oracle Fusion Middleware Developer’s Guide for Oracle Data
Integrator.

Reverse Engineering Hive Tables

RKM Hive is used to reverse engineer Hive tables and views. To perform a customized
reverse-engineering of Hive tables with RKM Hive, follow the usual procedures, as
described in the Oracle Fusion Middleware Developer’s Guide for Oracle Data Integrator.
This topic details information specific to Hive tables.

The reverse-engineering process creates the data stores for the corresponding Hive
table or views. You can use the data stores as either a source or a target in an
integration interface.

RKM Hive
RKM Hive reverses these metadata elements:

= Hive tables and views as Oracle Data Integrator data stores.

Specify the reverse mask in the Mask field, and then select the tables and views to
reverse. The Mask field in the Reverse tab filters reverse-engineered objects based
on their names. The Mask field cannot be empty and must contain at least the
percent sign (%).

= Hive columns as Oracle Data Integrator columns with their data types.

» Information about buckets, partitioning, clusters, and sort columns are set in the
respective flex fields in the Oracle Data Integrator data store or column metadata.

Table 4-3 describes the options for RKM Hive.

Table 4-3 RKM Hive Options

Option Description
USE_LOG Log intermediate results?
LOG_FILE_NAME Path and file name of log file. Default path is the user home and

the default file name is reverse.log.

Oracle Data Integrator Application Adapter for Hadoop 4-7

Designing the Interface

Table 4-4 describes the created flex fields.

Table 4-4 Flex Fields for Reverse-Engineered Hive Tables and Views
Flex Field
Object Flex Field Name Flex Field Code Type Description
DataStore Hive Buckets HIVE_BUCKETS String Number of buckets to be used for
clustering
Column Hive Partition HIVE_PARTITION_COLUMN Numeric All partitioning columns are marked as
Column "1". Partition information can come
from the following;:
= Mapped source column
= Constant value specified in the
target column
= File name fragment
Column Hive Cluster Column HIVE_CLUSTER_COLUMN Numeric All cluster columns are marked as "1".
Column Hive Sort Column HIVE_SORT_COLUMN Numeric All sort columns are marked as "1".

Designing the Interface

After reverse engineering Hive tables and configuring them, you can choose from
these interface configurations:

s Loading Data from Files into Hive
» Validating and Transforming Data Within Hive
s Loading Data into an Oracle Database from Hive and HDFS

Loading Data from Files into Hive

To load data from the local file system or the HDEFS file system into Hive tables:
1. Create the data stores for local files and HDFS files.

Refer to the Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for
Oracle Data Integrator for information about reverse engineering and configuring
local file data sources.

2. Create an interface using the file data store as the source and the corresponding
Hive table as the target. Use the IKM File to Hive (Load Data) knowledge module
specified in the flow tab of the interface. This integration knowledge module loads
data from flat files into Hive, replacing or appending any existing data.

IKM File to Hive
IKM File to Hive (Load Data) supports:

= One or more input files. To load multiple source files, enter an asterisk or a
question mark as a wildcard character in the resource name of the file DataStore
(for example, webshop_*.1og).

» File formats:
- Fixed length
— Delimited
— Customized format

= Loading options:

4-8 Oracle Big Data Connectors User's Guide

Designing the Interface

- Immediate or deferred loading
- Overwrite or append
- Hive external tables
Table 4-5 describes the options for IKM File to Hive (Load Data). See the knowledge

module for additional details.

Table 4-5 IKM File to Hive Options

Option Description

CREATE_TARG_TABLE Create target table.

TRUNCATE Truncate data in target table.

FILE IS_LOCAL Is the file in the local file system or in HDFS?
EXTERNAL_TABLE Use an externally managed Hive table.
USE_STAGING_TABLE Use a Hive staging table.

Select this option if the source and target do not match or if the
partition column value is part of the data file.

If the partitioning value is provided by a file name fragment or a
constant in target mapping, then set this value to false.

DELETE_TEMPORARY_OBJECTS Remove temporary objects after the interface execution.

DEFER_TARGET LOAD Load data into the final target now or defer?

OVERRIDE_ROW_FORMAT Provide a parsing expression for handling a custom file format
to perform the mapping from source to target.

STOP_ON_FILE_NOT_FOUND Stop if no source file is found?

Validating and Transforming Data Within Hive

After loading data into Hive, you can validate and transform the data using the
following knowledge modules.

IKM Hive Control Append

This knowledge module validates and controls the data, and integrates it into a Hive
target table in truncate/insert (append) mode. Invalid data is isolated in an error table
and can be recycled. IKM Hive Control Append supports inline view interfaces that
use either this knowledge module or IKM Hive Transform.

Table 4-6 lists the options. See the knowledge module for additional details.

Table 4-6 IKM Hive Control Append Options

Option Description

FLOW_CONTROL Validate incoming data?
RECYCLE_ERRORS Reintegrate data from error table?
STATIC_CONTROL Validate data after load?
CREATE_TARG_TABLE Create target table?

DELETE_TEMPORARY_OBJECTS Remove temporary objects after execution?

TRUNCATE Truncate data in target table?

Oracle Data Integrator Application Adapter for Hadoop 4-9

Designing the Interface

CKM Hive

This knowledge module checks data integrity for Hive tables. It verifies the validity of
the constraints of a Hive data store and diverts the invalid records to an error table.
You can use CKM Hive for static control and flow control. You must also define these
constraints on the stored data.

Table 4-7 lists the options for this check knowledge module. See the knowledge
module for additional details.

Table 4-7 CKM Hive Options

Option Description

DROP_ERROR_TABLE Drop error table before execution?

IKM Hive Transform

This knowledge module performs transformations. It uses a shell script to transform
the data, and then integrates it into a Hive target table using replace mode. The
knowledge module supports inline view interfaces and can be used as an inline-view
for IKM Hive Control Append.

The transformation script must read the input columns in the order defined by the
source data store. Only mapped source columns are streamed into the transformations.
The transformation script must provide the output columns in the order defined by
the target data store.

Table 4-8 lists the options for this integration knowledge module. See the knowledge
module for additional details.

Table 4-8 IKM Hive Transform Options

Option Description

CREATE_TARG_TABLE Create target table?

DELETE_TEMPORARY_OBJECTS Remove temporary objects after execution?

TRANSFORM_SCRIPT_NAME Script file name

TRANSFORM_SCRIPT Script content

PRE_TRANSFORM_DISTRIBUTE Provides an optional, comma-separated list of source column
names, which enables the knowledge module to distribute the
data before the transformation script is applied

PRE_TRANSFORM_SORT Provide an optional, comma-separated list of source column
names, which enables the knowledge module to sort the data
before the transformation script is applied

POST_TRANSFORM_ Provides an optional, comma-separated list of target column
DISTRIBUTE names, which enables the knowledge module to distribute the
data after the transformation script is applied

POST_TRANSFORM_SORT Provides an optional, comma-separated list of target column
names, which enables the knowledge module to sort the data
after the transformation script is applied

Loading Data into an Oracle Database from Hive and HDFS

IKM File-Hive to Oracle (OLH) integrates data from an HDEFS file or Hive source into
an Oracle database target using Oracle Loader for Hadoop. Using the interface
configuration and the selected options, the knowledge module generates an
appropriate Oracle Database target instance. Hive and Hadoop versions must follow
the Oracle Loader for Hadoop requirements.

4-10 Oracle Big Data Connectors User's Guide

Designing the Interface

See Also:

s "Oracle Loader for Hadoop Setup" on page 1-12 for required
versions of Hadoop and Hive

= "Setting Up the Oracle Data Integrator Agent to Execute Hadoop
Jobs" on page 4-5 for required environment variable settings

Table 4-9 lists the options for this integration knowledge module. See the knowledge
module for additional details.

Table 4-9

IKM File - Hive to Oracle (OLH)

Option

Description

OLH_OUTPUT_MODE

Specify JDBC, OCI, or Data Pump for data transfer.

CREATE_TARG_TABLE

Create target table?

REJECT_LIMIT

Maximum number of errors for Oracle Loader for Hadoop and
EXTTAB.

USE_HIVE_STAGING_TABLE

Materialize Hive source data before extract?

USE_ORACLE_STAGING_TABLE

Use an Oracle database staging table?

EXT_TAB_DIR_LOCATION

Shared file path used for Oracle Data Pump transfer.

TEMP_DIR

Local path for temporary files.

MAPRED_OUTPUT_BASE_DIR

HDEFS directory for Oracle Loader for Hadoop output files.

FLOW_TABLE_OPTIONS

Options for flow (stage) table creation when you are using an
Oracle database staging table.

DELETE_TEMPORARY_OBJECTS

Remove temporary objects after execution?

OVERRIDE_INPUTFORMAT

Set to handle custom file formats.

EXTRA_OLH_CONF_

Optional Oracle Loader for Hadoop configuration file properties

PROPERTIES
TRUNCATE Truncate data in target table?
DELETE_ALL Delete all data in target table?

Oracle Data Integrator Application Adapter for Hadoop 4-11

Designing the Interface

4-12 Oracle Big Data Connectors User's Guide

Part Il

Oracle XQuery for Hadoop

This part contains the following chapters:

» Chapter 5, "Using Oracle XQuery for Hadoop"

» Chapter 6, "Oracle XQuery for Hadoop Reference"
» Chapter 7, "Oracle XML Extensions for Hive"

O

Using Oracle XQuery for Hadoop

This chapter explains how to use Oracle XQuery for Hadoop to extract and transform
large volumes of semistructured data. It contains the following sections:

= What Is Oracle XQuery for Hadoop?

= Getting Started With Oracle XQuery for Hadoop

= About the Adapters

» Creating an XQuery Transformation

s Running a Query

» Oracle XQuery for Hadoop Configuration Properties
s Third-Party Licenses for Bundled Software

What Is Oracle XQuery for Hadoop?

Oracle XQuery for Hadoop is a transformation engine for semi-structured big data.
Oracle XQuery for Hadoop runs transformations expressed in the XQuery language by
translating them into a series of MapReduce jobs, which are executed in parallel on the
Apache Hadoop cluster. You can focus on data movement and transformation logic,
instead of the complexities of Java and MapReduce, without sacrificing scalability or
performance.

The input data can be located in a file system accessible through the Hadoop File
System API, including the Hadoop Distributed File System (HDFS), or stored in Oracle
NoSQL Database. Oracle XQuery for Hadoop can write the transformation results to
Hadoop files, Oracle NoSQL Database, or Oracle Database.

Oracle XQuery for Hadoop also provides extensions to Apache Hive to support
massive XML files. These extensions are available only on Oracle Big Data Appliance.

Oracle XQuery for Hadoop is based on mature industry standards including XPath,
XQuery, and XQuery Update Facility. It is fully integrated with other Oracle products,
and so it:

= Loads data efficiently into Oracle Database using Oracle Loader for Hadoop.
s Provides read and write support to Oracle NoSQL Database.

Figure 5-1 provides an overview of the data flow using Oracle XQuery for Hadoop.

Using Oracle XQuery for Hadoop 5-1

Getting Started With Oracle XQuery for Hadoop

Figure 5-1 Oracle XQuery for Hadoop Data Flow

Hadoop File System Hadoop File System

1 1 ! 1
1 1 | 1
1 1 | 1
1 1 | 1
1 4 1 ! 2 1
| Avro F!Ies | 1 Avro FII|GS |
| CSV Files) | | CSV Files . |
| Sequence Files 1 Sequence Files
Text Files | Text Files 1
| XML Files ! ! XML Files |
1 JSON® 1 | 1
1 1 | 1
1 1 | 1
1 1 ! 1
1 1 | 1
1 1 | 1
1 1 | 1
| 1 Oracle XQuery | 1
| | for Hadoop 1 1
1 1 | 1
1 1 | 1
1 1 s 1
| 1 | 1
| 1 | 1
1 1 | 1
1 1 ! 1
| 1) | 1
| 1 | 1
1 1 | 1
| 1 I Qracle 1
| | | Database I
| 1 | 1
| Oracle NoSQL ! I Oracle NoSQL |
: Database 1 : Database 1
I 1
| 1 | 1
| Avra 1 | Avro 1
| Text 1 1 Text 1
| XML | I XML I
| Binary XML 1 Binary XML |
1 [| 1
1 [r 1
1 1 | 1
1 1 | 1
o o o ____ N | Y e e a

* Parallel processing of JSON files is not
currently supported. See the JSON
Built-in Library Module.

Getting Started With Oracle XQuery for Hadoop

Oracle XQuery for Hadoop is designed for use by XQuery developers. If you are
already familiar with XQuery, then you are ready to begin. However, if you are new to
XQuery, then you must first acquire the basics of the language. This guide does not
attempt to cover this information.

See Also:

s "XQuery Tutorial" by W3Schools at
http://www.w3schools.com/xquery/

s "XQuery 3.0: An XML Query Language" at

http://www.w3.org/TR/xquery-30

Basic Steps
Take the following basic steps when using Oracle XQuery for Hadoop:

1. The first time you use Oracle XQuery for Hadoop, ensure that the software is
installed and configured.

See "Oracle XQuery for Hadoop Setup" on page 1-15.

5-2 Oracle Big Data Connectors User's Guide

About the Adapters

2. Login to either a node in the Hadoop cluster or a system set up as a Hadoop client
for the cluster.

3. Create an XQuery transformation that uses the Oracle XQuery for Hadoop
functions. It can use various adapters for input and output.

See "About the Adapters" on page 5-3 and "Creating an XQuery Transformation"
on page 5-6.

4. Execute the XQuery transformation.

See "Running a Query" on page 5-13.

Example: Hello World!
Follow these steps to create and run a simple query using Oracle XQuery for Hadoop:

1. Create a text file named hello.txt in the current directory that contains the line
Hello.

$ echo "Hello" > hello.txt

2. Copy the file to HDFS:

$ hdfs dfs -copyFromLocal hello.txt

3. Create a query file named hello.xq in the current directory with the following
content:

import module "oxh:text";
for $line in text:collection("hello.txt")
return text:put($line || " World!"

4. Run the query:

$ hadoop jar SOXH_HOME/lib/oxh.jar hello.xg -output ./myout -print

5. Check the output file:

$ hdfs dfs -cat ./myout/part-m-00000
Hello World!

About the Adapters

This section contains the following topics:

= About the Oracle XQuery for Hadoop Functions

= About the Avro File Adapter

= About the Oracle Database Adapter

= About the Oracle NoSQL Database Adapter

= About the Sequence File Adapter

= About the Text File Adapter

= About the XML File Adapter

= About Other Modules for Use With Oracle XQuery for Hadoop

Using Oracle XQuery for Hadoop 5-3

About the Adapters

About the Oracle XQuery for Hadoop Functions

Oracle XQuery for Hadoop reads from and writes to big data sets using collection and
put functions:

= A collection function reads data from Hadoop files or Oracle NoSQL Database as
a collection of items. A Hadoop file is one that is accessible through the Hadoop
File System API. On Oracle Big Data Appliance and most Hadoop clusters, this file
system is Hadoop Distributed File System (HDEFS).

= A put function adds a single item to a data set stored in Oracle Database, Oracle
NoSQL Database, or a Hadoop file.

The following is a simple example of an Oracle XQuery for Hadoop query that reads
items from one source and writes to another:

for $x in collection(...)
return put ($x)

Oracle XQuery for Hadoop comes with a set of adapters that you can use to define put
and collection functions for specific formats and sources. Each adapter has two
components:

= A set of built-in put and collection functions that are predefined for your
convenience.

= A set of XQuery function annotations that you can use to define custom put and
collection functions.

About the Avro File Adapter

The Avro file adapter provides access to Avro container files stored in HDFS. It
includes collection and put functions for reading from and writing to Avro container
files.

See Also: "Avro File Adapter” on page 6-2

About the Oracle Database Adapter

The Oracle Database adapter loads data into Oracle Database. This adapter supports a
custom put function for direct output to a table in an Oracle database using JDBC or
OCI. If a live connection to the database is not available, the adapter also supports
output to Data Pump or delimited text files in HDFS; the files can be loaded into the
Oracle database with a different utility, such as SQL*Loader, or using external tables.
This adapter does not move data out of the database, and therefore does not have
collection or get functions.

See Also:

= "Software Requirements" on page 1-12 for the supported versions
of Oracle Database

= "Oracle Database Adapter" on page 6-19

About the Oracle NoSQL Database Adapter

The Oracle NoSQL Database adapter provides access to data stored in Oracle NoSQL
Database. The data can be read from or written as Avro, XML, binary XML, or text.
This adapter includes collection, get, and put functions.

See Also: "Oracle NoSQL Database Adapter” on page 6-29

5-4 Oracle Big Data Connectors User's Guide

About the Adapters

About the Sequence File Adapter

The sequence file adapter provides access to Hadoop sequence files. A sequence file is
a Hadoop format composed of key-value pairs.

This adapter includes collection and put functions for reading from and writing to
HDFS sequence files that contain text, XML, or binary XML.

See Also: "Sequence File Adapter" on page 6-47

About the Text File Adapter

The text file adapter provides access to text files, such as CSV files. It contains
collection and put functions for reading from and writing to text files.

The JSON library module extends the support for JSON objects stored in text files.

See Also:
» "Text File Adapter" on page 6-58
= "JSON Module" on page 6-75

About the XML File Adapter

The XML file adapter provides access to XML files stored in HDFS. It contains
collection functions for reading large XML files. You must use another adapter to write
the output.

See Also: "XML File Adapter" on page 6-68

About Other Modules for Use With Oracle XQuery for Hadoop

You can use functions from these additional modules in your queries:

Standard XQuery Functions
The standard XQuery math functions are available.

See "Functions and Operators on Numerics" in W3C XPath and XQuery Functions and
Operators 3.0 at

http://www.w3.org/TR/xpath-functions-30/#numeric-functions

Hadoop Functions
The Hadoop module is a collection of functions that are specific to Hadoop.

See "Hadoop Module" on page 6-86.

JSON Functions
The JSON module is a collection of helper functions for parsing JSON data.

See "JSON Module" on page 6-75.

Duration, Date, and Time Functions
These functions parse duration, date, and time values.

See "Duration, Date, and Time Functions" on page 6-80.

String-Processing Functions
These functions add and remove white space that surrounds data values.

See "String Functions" on page 6-84.

Using Oracle XQuery for Hadoop 5-5

Creating an XQuery Transformation

Creating an XQuery Transformation

This chapter describes how to create XQuery transformations using Oracle XQuery for
Hadoop. It contains the following topics:

XQuery Transformation Requirements

About XQuery Language Support

Accessing Data in the Hadoop Distributed Cache

Calling Custom Java Functions from XQuery

Accessing User-Defined XQuery Library Modules and XML Schemas

XQuery Transformation Examples

XQuery Transformation Requirements

You create a transformation for Oracle XQuery for Hadoop the same way as any other
XQuery transformation, except that you must comply with these additional
requirements:

or

The main XQuery expression (the query body) must be in one of the following
forms:

FLWOR,

(FLWOR,, FLWOR,,... , FLWORy)

In this syntax FLWOR is a top-level "For, Let, Where, Order by, Return" expression.
See Also: "FLWOR Expressions" in W3C XQuery 3.0: An XML Query
Language at
http://www.w3.org/TR/xquery-30/#id-flwor-expressions

Each top-level FLWOR expression must have a for clause that iterates over an

Oracle XQuery for Hadoop collection function. This for clause cannot have a
positional variable.

See Chapter 6 for the collection functions.

Each top-level FLWOR expression must return one or more results from calling the
Oracle XQuery for Hadoop put function. See Chapter 6 for the put functions.

The query body must be an updating expression. Because all put functions are
classified as updating functions, all Oracle XQuery for Hadoop queries are
updating queries.

In Oracle XQuery for Hadoop, a %* :put annotation indicates that the function is
updating. The $updating annotation or updating keyword is not required with it.

See Also: For a description of updating expressions, "Extensions to
XQuery 1.0" in W3C XQuery Update Facility 1.0 at

http://www.w3.org/TR/xquery-update-10/#dt-updating-expressio
n

Each top-level FLOWR expression can have optional let, where, and group by
clauses. Other types of clauses are invalid, such as order by, count, and window
clauses.

5-6 Oracle Big Data Connectors User's Guide

http://www.w3.org/TR/xquery-update-10/#dt-updating-expression
http://www.w3.org/TR/xquery-update-10/#dt-updating-expression

Creating an XQuery Transformation

About XQuery Language Support
Oracle XQuery for Hadoop supports the XQuery 1.0 specification:

s For the language, see http://www.w3.org/TR/xquery/
s For the functions, see http://www.w3.org/TR/xpath-functions/

In addition, Oracle XQuery for Hadoop supports the following XQuery 3.0 features.
The links are to the relevant sections of W3C XQuery 3.0: An XML Query Language.

s group by clause

See http://www.w3.org/TR/xquery-30/#id-group-by.
s for clause with the allowing empty modifier

See http://www.w3.org/TR/xquery-30/#id-xquery-for-clause.
s Annotations

See http://www.w3.org/TR/xquery-30/#id-annotations.
= String concatenation expressions

See http://www.w3.org/TR/xquery-30/#id-string-concat-expr.
» Standard functions:

fn:analyze-string
fn:unparsed-text
fn:unparsed-text-lines
fn:unparsed-text-available
fn:serialize

fn:parse-xml

See http://www.w3.org/TR/xpath-functions-30/.
s Trigonometric and exponential functions

See http://www.w3.org/TR/xpath-functions-30/#trigonometry.

Accessing Data in the Hadoop Distributed Cache

You can use the Hadoop distributed cache facility to access auxiliary job data. This
mechanism can be useful in a join query when one side is a relatively small file.

The query might execute faster if the smaller file is accessed from the distributed
cache.

To place a file into the distributed cache, use the -files Hadoop command line option
when calling Oracle XQuery for Hadoop.

For a query to read a file from the distributed cache, it must call the fn:doc function
for XML, and either fn:unparsed-text or fn:unparsed-text-lines for text files.

See Example 7.

Calling Custom Java Functions from XQuery

Oracle XQuery for Hadoop is extensible with custom external functions implemented
in the Java language.

The Java implementation must be a static method with the parameter and return types
as defined by the XQuery API for Java (XQJ) specification.

Using Oracle XQuery for Hadoop 5-7

Creating an XQuery Transformation

The custom Java function binding is defined in Oracle XQuery for Hadoop by
annotating an external function definition with the $ora-java:binding annotation.
This annotation has the following syntax:

%ora-java:binding ("java.class.name[#method]")

java.class.name
The fully qualified name of a Java class that contains the implementation method.

method
A Java method name. It defaults to the XQuery function name. Optional.

See Example 8 for an example of $ora-java:binding.

All JAR files that contain custom Java functions must be listed in the -1ibjars
command line option. For example:

hadoop jar $OXH_HOME/lib/oxh.jar -libjars myfunctions.jar query.xqg

See Also: "XQuery API for Java (XQJ)" at

http://www.jcp.org/en/jsr/detail?id=225

Accessing User-Defined XQuery Library Modules and XML Schemas

Oracle XQuery for Hadoop supports user-defined XQuery library modules and XML
schemas when you comply with these criteria:

Locate the library module or XML schema file in the same directory where the
main query resides on the client calling Oracle XQuery for Hadoop.

Import the library module or XML schema from the main query using the location
URI parameter of the import module/schema statement.

Specify the library module or XML schema file in the -files command line option
when calling Oracle XQuery for Hadoop.

See Example 9.

See Also: "Location URIs" in the W3C XQuery 3.0: An XML Query
Language at

http://www.w3.org/TR/xquery-30/#id-module-handling-location-
uris

XQuery Transformation Examples

For these examples, the following text files are in HDFS. The files contain a log of visits
to different web pages. Each line represents a visit to a web page and contains the
time, user name, page visited, and the status code.

mydata/visitsl.log

2013-10-28T06:00:00, john, index.html, 200
2013-10-28T08:30:02, kelly, index.html, 200
2013-10-28T08:32:50, kelly, about.html, 200
2013-10-30T10:00:10, mike, index.html, 401

mydata/visits2.log

2013-10-30T10:00:01, john, index.html, 200
2013-10-30T10:05:20, john, about.html, 200

5-8 Oracle Big Data Connectors User's Guide

http://www.w3.org/TR/xquery-30/#id-module-handling-location-uris
http://www.w3.org/TR/xquery-30/#id-module-handling-location-uris

Creating an XQuery Transformation

2013-11-01T08:00:08, laura, index.html, 200
2013-11-04T06:12:51, kelly, index.html, 200
2013-11-04T06:12:40, kelly, contact.html, 200

Example 1 Basic Filtering
This query filters out pages visited by user kelly and writes those files into a text file

import module "oxh:text";

for $line in text:collection("mydata/visits*.log")
let $split := fn:tokenize($line, "\s*,\s*")

where $split[2] eg "kelly"

return text:put($line)

The query creates text files in the output directory that contain the following lines:

2013-11-04T06:12:51, kelly, index.html, 200
2013-11-04T06:12:40, kelly, contact.html, 200
2013-10-28T08:30:02, kelly, index.html, 200
2013-10-28T08:32:50, kelly, about.html, 200

Example 2 Group By and Aggregation
The next query computes the number of page visits per day:

import module "oxh:text";

for $line in text:collection("mydata/visits*.log")
let $split := fn:tokenize($line, "\s*,\s*")

let $time := xs:dateTime(S$split([1])

let $day := xs:date(S$time)

group by S$day

return text:put($day || " => " || fn:count($line))

The query creates text files that contain the following lines:

2013-10-28 =>
2013-10-30 =>
2013-11-01 =>
2013-11-04 =>

N W W

Example 3 Inner Joins

This example queries the following text file in HDFS, in addition to the other files. The
file contains user profile information such as user 1D, full name, and age, separated by
a colon (3).

mydata/users. txt

john:John Doe:45
kelly:Kelly Johnson:32
laura:Laura Smith:
phil:Phil Johnson:27

The following query performs a join between users.txt and the log files. It computes
how many times users older than 30 visited each page.

import module "oxh:text";

for SuserLine in text:collection("mydata/users.txt")

let SuserSplit := fn:tokenize(SuserLine, "\s*:\s*")
let SuserId := SuserSplit[1]
let SuserAge := xs:integer($SuserSplit[3][. castable as xs:integer])

Using Oracle XQuery for Hadoop 5-9

Creating an XQuery Transformation

for $visitLine in text:collection("mydata/visits*.log")
let $SvisitSplit := fn:tokenize($visitLine, "\s*,\s*")
let $SvisitUserId := $visitSplit[2]

where SuserId eq $visitUserId and $SuserAge gt 30

group by Spage := $visitSplit[3]

return text:put($page || " " || fn:count($userLine))

The query creates text files that contain the following lines:

about.html 2
contact.html 1
index.html 4

The next query computes the number of visits for each user who visited any page; it
omits users who never visited any page.

import module "oxh:text";

for SuserLine in text:collection("mydata/users.txt")
let SuserSplit := fn:tokenize(SuserLine, "\s*:\s*")
let SuserId := SuserSplit[1]

for $visitLine in text:collection("mydata/visits*.log")
[$SuserId eqg fn:tokenize(., "\s*,\s*")[2]]

group by SuserId
return text:put(SuserId || " " || fn:count($visitLine))

The query creates text files that contain the following lines:

john 3
kelly 4
laura 1

Note: When the results of two collection functions are joined, only
equijoins are supported. If one or both sources are not from a
collection function, then any join condition is allowed.

Example 4 Left Outer Joins

This example is similar to the second query in Example 3, but also counts users who
did not visit any page.

import module "oxh:text";

for SuserLine in text:collection("mydata/users.txt")
let SuserSplit := fn:tokenize(SuserLine, "\s*:\s*")
let SuserId := SuserSplit[1]

for $visitLine allowing empty in text:collection("mydata/visits*.log")
[SuserId eqg fn:tokenize(., "\s*,\s*")[2]]

group by SuserId
return text:put(SuserId || " " || fn:count($visitLine))

The query creates text files that contain the following lines:

john 3
kelly 4
laura 1

5-10 Oracle Big Data Connectors User's Guide

Creating an XQuery Transformation

phil 0

Example 5 Semijoins
The next query finds users who have ever visited a page.

import module "oxh:text";

for SuserLine in text:collection("mydata/users.txt")
let SuserId := fn:tokenize(SuserLine, "\s*:\s*")[1]

where some S$visitLine in text:collection("mydata/visits*.log")
satisfies SuserId eq fn:tokenize(SvisitLine, "\s*,\s*")[2]

return text:put(SuserId)

The query creates text files that contain the following lines:
john

kelly

laura

Example 6 Multiple Outputs

The next query finds web page visits with a 401 code and writes them to trace* files
using the XQuery text:trace() function. It writes the remaining visit records into the
default output files.

import module "oxh:text";

for $visitLine in text:collection("mydata/visits*.log")

let $SvisitCode := xs:integer(fn:tokenize($visitLine, "\s*,\s*")[4])
return if ($visitCode eq 401) then text:trace($visitLine) else
text:put ($visitLine)

The query generates a trace* text file that contains the following line:

2013-10-30T10:00:10, mike, index.html, 401

The query also generates default output files that contain the following lines:

2013-10-30T10:00:01, john, index.html, 200
2013-10-30T10:05:20, john, about.html, 200
2013-11-01T08:00:08, laura, index.html, 200
2013-11-04T06:12:51, kelly, index.html, 200
2013-11-04T06:12:40, kelly, contact.html, 200
2013-10-28T06:00:00, john, index.html, 200
2013-10-28T08:30:02, kelly, index.html, 200
2013-10-28T08:32:50, kelly, about.html, 200

Example 7 Accessing Auxiliary Input Data

The next query is an alternative version of the second query in Example 3, but it uses
the fn:unparsed-text-lines function to access a file in the Hadoop distributed cache.

import module "oxh:text";

for $visitLine in text:collection("mydata/visits*.log")
let SvisitUserId := fn:tokenize($visitLine, "\s*,\s*")[2]

for SuserLine in fn:unparsed-text-lines("users.txt")

let SuserSplit := fn:tokenize(SuserLine, "\s*:\s*")
let SuserId := SuserSplit[1]

Using Oracle XQuery for Hadoop 5-11

Creating an XQuery Transformation

where SuserId eq $visitUserId

group by SuserId
return text:put($userId || " " || fn:count($visitLine))

The hadoop command to run the query must use the Hadoop -files option. See
"Accessing Data in the Hadoop Distributed Cache" on page 5-7.

hadoop jar $OXH_HOME/lib/oxh.jar -files users.txt query.xqg

The query creates text files that contain the following lines:

john 3
kelly 4
laura 1

Example 8 Calling a Custom Java Function from XQuery
The next query formats input data using the java.lang.String#format method.

import module "oxh:text";

declare %ora-java:binding("java.lang.String#format")
function local:string-format (Spattern as xs:string, $data as xs:anyAtomicType*)
as xs:string external;

for $line in text:collection("mydata/users*.txt")
let $split := fn:tokenize($Sline, "\s*:\s*")
return text:put(local:string-format("%s,%s,%s", S$split))

The query creates text files that contain the following lines:

john,John Doe, 45
kelly,Kelly Johnson, 32
laura,Laura Smith,
phil,Phil Johnson, 27

See Also: Java Platform Standard Edition 7 API Specification for Class
String at

http://docs.oracle.com/javase/7/docs/api/java/lang/String.ht
ml#format (java.lang.String, java.lang.Object...)

Example 9 Using User-defined XQuery Library Modules and XML Schemas
This example uses a library module named mytools.xq.

module namespace mytools = "urn:mytools";

declare %ora-java:binding("java.lang.String#format")
function mytools:string-format ($pattern as xs:string, S$data as
xs:anyAtomicType*) as xs:string external;

The next query is equivalent to the previous one, but it calls a string-format function
from the mytools.xq library module:

import module namespace mytools = "urn:mytools" at "mytools.xq";
import module "oxh:text";

for $line in text:collection("mydata/users*.txt")
let $split := fn:tokenize($line, "\s*:\s*")
return text:put (mytools:string-format("%s,%s,%s", S$split))

5-12 Oracle Big Data Connectors User's Guide

http://docs.oracle.com/javase/7/docs/api/java/lang/String.html#format(java.lang.String, java.lang.Object...)
http://docs.oracle.com/javase/7/docs/api/java/lang/String.html#format(java.lang.String, java.lang.Object...)

Running a Query

The query creates text files that contain the following lines:

john, John Doe, 45
kelly,Kelly Johnson, 32
laura, Laura Smith,
phil,Phil Johnson, 27

Running a Query
To run a query, call the 0XH utility using the hadoop jar command.
The following is the basic syntax:

hadoop jar $OXH_HOME/lib/oxh.jar [generic options] query.xq -output directory
[-clean] [-1s] [-print] [-skiperrors] [-version]

Oracle XQuery for Hadoop Options

query.xq
Identifies the XQuery file. See "Creating an XQuery Transformation" on page 5-6.

-clean
Deletes all files from the output directory before running the query.

-Is
Lists the contents of the output directory after the query executes.

-output directory

Specifies the output directory of the query. The put functions of the file adapters create
files in this directory. Written values are spread across one or more files. The number
of files created depends on how the query is distributed among tasks. By default, each
output file has a name that starts with part, such as part-m-00000.

See "About the Oracle XQuery for Hadoop Functions" on page 5-4 for a description of
put functions.

-print
Prints the contents of all files in the output directory to the standard output (your
screen). When printing Avro files, each record prints as JSON text.

-skiperrors
Turns on error recovery, so that an error does not halt processing.

All errors that occur during query processing are counted, and the total is logged at
the end of the query. The error messages of the first 20 errors per task are also logged.
See oracle.hadoop.xquery.skiperrors.counters,
oracle.hadoop.xquery.skiperrors.max, and
oracle.hadoop.xquery.skiperrors.log.max.

-version
Displays the Oracle XQuery for Hadoop version and exits without running a query.

Generic Options

You can include any generic hadoop command-line option. OXH implements the
org.apache.hadoop.util.Tool interface and follows the standard Hadoop methods
for building MapReduce applications.

The following generic options are commonly used with Oracle XQuery for Hadoop:

Using Oracle XQuery for Hadoop 5-13

Oracle XQuery for Hadoop Configuration Properties

-conf job_config.xml
Identifies the job configuration file. See "Oracle XQuery for Hadoop Configuration
Properties" on page 5-14.

When you are working with the Oracle Database or Oracle NoSQL Database adapters,
you can set various job properties in this file. See "%oracle-property Annotations and
Corresponding Oracle Loader for Hadoop Configuration Properties" on page 6-26 and
"Oracle NoSQL Database Adapter Configuration Properties" on page 6-44.

-D property=value
Identifies a configuration property. See "Oracle XQuery for Hadoop Configuration
Properties" on page 5-14.

-files
Specifies a comma-delimited list of files that are added to the distributed cache. See
"Accessing Data in the Hadoop Distributed Cache" on page 5-7.

See Also: For full descriptions of the generic options:

http://hadoop.apache.org/docs/rl.1.2/commands_
manual.html#Generic+Options

About Running Queries Locally

When developing queries, you can run them locally before submitting them to the
cluster. A local run enables you to see how the query behaves on small data sets and
diagnose potential problems quickly.

In local mode, relative URIs resolve against the local file system instead of HDFS, and
the query runs in a single process.

To run a query in local mode:

1. Set the Hadoop -jt and -£s generic arguments to local. This example runs the
query described in "Example: Hello World!" on page 5-3 in local mode:

$ hadoop jar SOXH_HOME/lib/oxh.jar -jt local -fs local ./hello.xqg -output
./myoutput -print
2. Check the result file in the local output directory of the query, as shown in this

example:

$ cat ./myoutput/part-m-00000
Hello World!

Oracle XQuery for Hadoop Configuration Properties

Oracle XQuery for Hadoop uses the generic methods of specifying configuration
properties in the hadoop command. You can use the -conf option to identify
configuration files, and the -D option to specify individual properties. See "Running a
Query" on page 5-13.
See Also: Hadoop documentation for job configuration files at
http://wiki.apache.org/hadoop/JobConfFile
oracle.hadoop.xquery.output
Type: String
Default Value: Not defined

5-14 Oracle Big Data Connectors User's Guide

http://hadoop.apache.org/docs/r1.1.2/commands_manual.html#Generic+Options
http://hadoop.apache.org/docs/r1.1.2/commands_manual.html#Generic+Options

Oracle XQuery for Hadoop Configuration Properties

Description: Sets the output directory for the query. This property is equivalent to the
-output command line option.

oracle.hadoop.xquery.scratch
Type: String

Default Value: /tmp /user_name/oxh. The user_name is the name of the user running
Oracle XQuery for Hadoop.

Description: Sets the HDFS temp directory for Oracle XQuery for Hadoop to store
temporary files.

oracle.hadoop.xquery.timezone
Type: String
Default Value: Client system time zone

Description: The XQuery implicit time zone, which is used in a comparison or
arithmetic operation when a date, time or dateTime value does not have a time zone.
The value must be in the format described by the Java TimeZone class. See the Java 7
API Specification at

http://docs.oracle.com/javase/7/docs/api/java/util/TimeZone.html
oracle.hadoop.xquery.skiperrors

Type: Boolean

Default Value: false

Description: Set to true to turn on error recovery, or set to false to stop processing
when an error occurs. This property is equivalent to the -skiperrors command line
option.

oracle.hadoop.xquery.skiperrors.counters
Type: Boolean
Default Value: true

Description: Set to true to group errors by error code, or set to false to report all
errors in a single counter.

oracle.hadoop.xquery.skiperrors.max
Type: Integer

Default Value: Unlimited

Description: Sets the maximum number of errors that a single MapReduce task can
recover from (skip).

oracle.hadoop.xquery.skiperrors.log.max
Type: Integer

Default Value: 20

Description: Sets the maximum number of errors that a single MapReduce task logs.

logdj.logger.oracle.hadoop.xquery
Type: String
Default Value: Not defined

Description: Configures the 1og4j logger for each task with the specified threshold
level. Set the property to one of these values: OFF, FATAL, ERROR, WARN, INFO, DEBUG, ALL.
If this property is not set, then Oracle XQuery for Hadoop does not configure log4j.

Using Oracle XQuery for Hadoop 5-15

http://docs.oracle.com/javase/7/docs/api/java/util/TimeZone.html

Third-Party Licenses for Bundled Software

Third-Party Licenses for Bundled Software

Oracle XQuery for Hadoop installs the following third-party products:
= ANTLR32

= Apache Ant1.7.1

= Apache Avro1.7.3,1.7.4

= Apache Xerces

= Apache XMLBeans 2.5

s Jackson 1.8.8

= Woodstox XML Parser 4.2

Unless otherwise specifically noted, or as required under the terms of the third
party license (e.g., LGPL), the licenses and statements herein, including all
statements regarding Apache-licensed code, are intended as notices only.

Apache Licensed Code

ANTLR 3.2

The following is included as a notice in compliance with the terms of the Apache 2.0
License, and applies to all programs licensed under the Apache 2.0 license:

You may not use the identified files except in compliance with the Apache License,
Version 2.0 (the "License.")

You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
A copy of the license is also reproduced in "Apache Licensed Code" on page 3-40.

Unless required by applicable law or agreed to in writing, software distributed under
the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
CONDITIONS OF ANY KIND, either express or implied.

See the License for the specific language governing permissions and limitations under
the License.

[The BSD License]
Copyright © 2010 Terence Parr
All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

= Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

= Redistributions in binary form must reproduce the above copyright notice, this list
of conditions and the following disclaimer in the documentation and/or other
materials provided with the distribution.

= Neither the name of the author nor the names of its contributors may be used to
endorse or promote products derived from this software without specific prior
written permission.

5-16 Oracle Big Data Connectors User's Guide

Third-Party Licenses for Bundled Software

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

Apache Ant 1.7.1
Copyright 1999-2008 The Apache Software Foundation

This product includes software developed by The Apache Software Foundation
(http://www.apache.org).

This product includes also software developed by:
s the W3C consortium (http://www.w3c.org)
n the SAX project (http://www.saxproject.org)

The <sync> task is based on code Copyright (c) 2002, Landmark Graphics Corp that
has been kindly donated to the Apache Software Foundation.

Portions of this software were originally based on the following;:
= software copyright (c) 1999, IBM Corporation, http:/ /www.ibm.com.
= software copyright (c) 1999, Sun Microsystems, http:/ /www.sun.com.

= voluntary contributions made by Paul Eng on behalf of the Apache Software
Foundation that were originally developed at iClick, Inc., software copyright (c)
1999

W3C® SOFTWARE NOTICE AND LICENSE
http:/ /www.w3.org/Consortium/Legal /2002 / copyright-software-20021231

This work (and included software, documentation such as READMEs, or other related
items) is being provided by the copyright holders under the following license. By
obtaining, using and/or copying this work, you (the licensee) agree that you have
read, understood, and will comply with the following terms and conditions.

Permission to copy, modify, and distribute this software and its documentation, with
or without modification, for any purpose and without fee or royalty is hereby granted,
provided that you include the following on ALL copies of the software and
documentation or portions thereof, including modifications:

1. The full text of this NOTICE in a location viewable to users of the redistributed or
derivative work.

2. Any pre-existing intellectual property disclaimers, notices, or terms and
conditions. If none exist, the W3C Software Short Notice should be included
(hypertext is preferred, text is permitted) within the body of any redistributed or
derivative code.

Using Oracle XQuery for Hadoop 5-17

Third-Party Licenses for Bundled Software

3. Notice of any changes or modifications to the files, including the date changes
were made. (We recommend you provide URIs to the location from which the
code is derived.)

THIS SOFTWARE AND DOCUMENTATION IS PROVIDED "AS IS," AND
COPYRIGHT HOLDERS MAKE NO REPRESENTATIONS OR WARRANTIES,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT
THE USE OF THE SOFTWARE OR DOCUMENTATION WILL NOT INFRINGE ANY
THIRD PARTY PATENTS, COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS.

COPYRIGHT HOLDERS WILL NOT BE LIABLE FOR ANY DIRECT, INDIRECT,
SPECIAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF ANY USE OF THE
SOFTWARE OR DOCUMENTATION.

The name and trademarks of copyright holders may NOT be used in advertising or
publicity pertaining to the software without specific, written prior permission. Title to
copyright in this software and any associated documentation will at all times remain
with copyright holders.

This formulation of W3C's notice and license became active on December 31 2002. This
version removes the copyright ownership notice such that this license can be used
with materials other than those owned by the W3C, reflects that ERCIM is now a host
of the W3C, includes references to this specific dated version of the license, and
removes the ambiguous grant of "use". Otherwise, this version is the same as the
previous version and is written so as to preserve the Free Software Foundation's
assessment of GPL compatibility and OSI's certification under the Open Source
Definition. Please see our Copyright FAQ for common questions about using materials
from our site, including specific terms and conditions for packages like libwww,
Amaya, and Jigsaw. Other questions about this notice can be directed to
site-policy@w?3.org.

Joseph Reagle <site-policy@w3.org>

This license came from: http://www.megginson.com/SAX/copying.html

However please note future versions of SAX may be covered under
http:/ /saxproject.org/?selected=pd

SAX2 is Free!

I hereby abandon any property rights to SAX 2.0 (the Simple API for XML), and
release all of the SAX 2.0 source code, compiled code, and documentation contained in
this distribution into the Public Domain. SAX comes with NO WARRANTY or
guarantee of fitness for any purpose.

David Megginson, david@megginson.com

2000-05-05

Apache Avro 1.7.3,1.7.4
Copyright 2010 The Apache Software Foundation

This product includes software developed at The Apache Software Foundation
(http:/ /www.apache.org/).

C JSON parsing provided by Jansson and written by Petri Lehtinen. The original
software is available from http://www.digip.org/jansson/.

5-18 Oracle Big Data Connectors User's Guide

Third-Party Licenses for Bundled Software

Licensed under the Apache License, Version 2.0 (the "License"); you may not use
Apache Avro except in compliance with the License. You may obtain a copy of the
License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under
the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.

License for the Jansson C JSON parser used in the C implementation:
Copyright (c) 2009 Petri Lehtinen <petri@digip.org>

Permission is hereby granted, free of charge, to any person obtaining a copy of this
software and associated documentation files (the "Software"), to deal in the Software
without restriction, including without limitation the rights to use, copy, modify, merge,
publish, distribute, sublicense, and/or sell copies of the Software, and to permit
persons to whom the Software is furnished to do so, subject to the following
conditions:

The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.

License for the Json.NET used in the C# implementation:
Copyright (c) 2007 James Newton-King

Permission is hereby granted, free of charge, to any person obtaining a copy of this
software and associated documentation files (the "Software"), to deal in the Software
without restriction, including without limitation the rights to use, copy, modify, merge,
publish, distribute, sublicense, and/or sell copies of the Software, and to permit
persons to whom the Software is furnished to do so, subject to the following
conditions:

The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.

License for msinttypes used in the C implementation:
Source from:

Using Oracle XQuery for Hadoop 5-19

Third-Party Licenses for Bundled Software

http://code.google.com/p/msinttypes/downloads/detail?name=msinttypes-r26.z
ip

Copyright (c) 2006-2008 Alexander Chemeris

Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

2, Redistributions in binary form must reproduce the above copyright notice, this list
of conditions and the following disclaimer in the documentation and/or other
materials provided with the distribution.

3. The name of the author may be used to endorse or promote products derived from
this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR "AS IS" AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

License for Dirent API for Microsoft Visual Studio used in the C implementation:
Source from:

http://www.softagalleria.net/download/dirent/dirent-1.11.zip
Copyright (C) 2006 Toni Ronkko

Permission is hereby granted, free of charge, to any person obtaining a copy of this
software and associated documentation files (the *“*Software"), to deal in the Software
without restriction, including without limitation the rights to use, copy, modify, merge,
publish, distribute, sublicense, and/or sell copies of the Software, and to permit
persons to whom the Software is furnished to do so, subject to the following
conditions:

The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL TONI RONKKO BE LIABLE FOR
ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF
CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

5-20 Oracle Big Data Connectors User's Guide

Third-Party Licenses for Bundled Software

Apache Xerces

Xerces Copyright © 1999-2002 The Apache Software Foundation. All rights reserved.
Licensed under the Apache 1.1 License Agreement.

The names "Xerces" and "Apache Software Foundation must not be used to endorse or
promote products derived from this software or be used in a product name without
prior written permission. For written permission, please contact apache@apache.org.

This software consists of voluntary contributions made by many individuals on behalf
of the Apache Software Foundation. For more information on the Apache Software
Foundation, please see http://www.apache.org.

The Apache Software License, Version 1.1

Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list
of conditions and the following disclaimer in the documentation and/or other
materials provided with the distribution.

3. The end-user documentation included with the redistribution, if any, must include
the acknowledgements set forth above in connection with the software ("This
product includes software developed by the) Alternately, this
acknowledgement may appear in the software itself, if and wherever such
third-party acknowledgements normally appear.

4. The names identified above with the specific software must not be used to endorse
or promote products derived from this software without prior written permission.
For written permission, please contact apache@apache.org.

5. Products derived from this software may not be called "Apache" nor may
"Apache" appear in their names without prior written permission of the Apache
Group.

THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESSED OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE APACHE SOFTWARE FOUNDATION
OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

Apache XMLBeans 2.5

This product includes software developed by The Apache Software Foundation
(http:/ /www.apache.org/).

Portions of this software were originally based on the following:
= software copyright (c) 2000-2003, BEA Systems, <http://www.bea.com/>.

Aside from contributions to the Apache XMLBeans project, this software also includes:

Using Oracle XQuery for Hadoop 5-21

Third-Party Licenses for Bundled Software

Jackson 1.8.8

= one or more source files from the Apache Xerces-] and Apache Axis products,
Copyright (c) 1999-2003 Apache Software Foundation

s W3C XML Schema documents Copyright 2001-2003 (c) World Wide Web
Consortium (Massachusetts Institute of Technology, European Research
Consortium for Informatics and Mathematics, Keio University)

= resolverjar from Apache Xml Commons project, Copyright (c) 2001-2003 Apache
Software Foundation

s Piccolo XML Parser for Java from http://piccolo.sourceforge.net/, Copyright
2002 Yuval Oren under the terms of the Apache Software License 2.0

= JSR-173 Streaming API for XML from
http://sourceforge.net/projects/xmlpullparser/, Copyright 2005 BEA under
the terms of the Apache Software License 2.0

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this
file except in compliance with the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under
the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.

Woodstox XML Parser 4.2

This copy of Woodstox XML processor is licensed under the Apache (Software)
License, version 2.0 ("the License"). See the License for details about distribution rights,
and the specific rights regarding derivate works.

You may obtain a copy of the License at:
http://www.apache.org/licenses/

A copy is also included with both the downloadable source code package and jar that
contains class bytecodes, as file "ASL 2.0". In both cases, that file should be located
next to this file: in source distribution the location should be "release-notes/asl"; and in
jar "META-INE/"

This product currently only contains code developed by authors of specific
components, as identified by the source code files.

Since product implements StAX AP]I, it has dependencies to StAX API classes.
For additional credits (generally to people who reported problems) see CREDITS file.

5-22 Oracle Big Data Connectors User's Guide

6

Oracle XQuery for Hadoop Reference

This chapter describes the adapters available in Oracle XQuery for Hadoop:

Avro File Adapter

Oracle Database Adapter

Oracle NoSQL Database Adapter
Sequence File Adapter

Text File Adapter

XML File Adapter

Serialization Annotations

This chapter also describes several other library modules:

JSON Module

Hadoop Module
Utility Module

Oracle XQuery for Hadoop Reference 6-1

Avro File Adapter

Avro File Adapter

The Avro file adapter provides functions to read and write Avro container files in
HDFS. It is described in the following topics:

s Built-in Functions for Reading Avro Files
s Custom Functions for Reading Avro Container Files
s Custom Functions for Writing Avro Files

= About Converting Values Between Avro and XML

6-2 Oracle Big Data Connectors User's Guide

Avro File Adapter

Built-in Functions for Reading Avro Files

To use the built-in functions in your query, you must import the Avro file module as
follows:

import module "oxh:avro";

The Avro file module contains the following functions:
= avro:collection-avroxml
s avro:get

There are no built-in functions for writing Avro container files. To write Avro files, you
must use a custom function that specifies the Avro writer schema.

avro:collection-avroxml

Signature

Parameters

Returns

avro:get

Signature

Returns

Example

Accesses a collection of Avro files in HDFS. The files may be split up and processed in
parallel by multiple tasks. The function returns an XML element for each object. See
"About Converting Values Between Avro and XML" on page 6-10.

declare %avro:collection("avroxml") function
avro:collection-avroxml (Suris as xs:string*) as element()* external;

$uris
The Avro file URIs

One XML element for each Avro object.

Retrieves an entry from an Avro map modeled as XML

If $map not present, then the behavior is identical to calling the two-argument function
and using the context item for $map.

avro:get (Skey as xs:string?, Smap as node()?) as element (oxh:entry)?

avro:get ($key as xs:string?) as element (oxh:entry)?

The value of this XPath expression:

Smap/oxh:entry[@key eq Skey]

These function calls are equivalent:

$var/avro:get ("key")

Oracle XQuery for Hadoop Reference 6-3

Built-in Functions for Reading Avro Files

avro:get ("key", Svar)
Svar/oxh:entry[@key eq "key"]

In this example, $var is an Avro map modeled as XML. See "Reading Maps" on
page 6-11.

6-4 Oracle Big Data Connectors User's Guide

Avro File Adapter

Custom Functions for Reading Avro Container Files

Signature

Annotations

You can use the following annotations to define functions that read collections of Avro
container files in HDFS. These annotations provide additional functionality that is not
available using the built-in functions.

Custom functions for reading Avro files must have the following signature:

declare %avro:collection("avroxml") [additional annotations]
function local:myFunctionName(Suris as xs:string*) as element()* external;

%avro:collection("avroxml")
Declares the avroxml collection function. Required.

A collection function accesses Avro files in HDFS. The files might be split up and
processed in parallel by multiple tasks. The function returns an XML element for each
object. See "About Converting Values Between Avro and XML" on page 6-10.

%avro:schema("avro-schema")
Provides the Avro reader schema as the value of the annotation. Optional.

The objects in the file are mapped to the reader schema when specified. For example:

%avro:schema ('

{

"type": "record",

"name": "Person",

"fields" : [
{"name": "full_name", "type": "string"},
{"name": "age", "type": ["int", "null"] }

')
You cannot combine this annotation with $avro:schema-file or $avro:schema-kv.

See Also: "Schema Resolution” in the Apache Avro Specification at
http://avro.apache.org/docs/current/spec.html#Schema+Resolut

ion

%avro:schema-file(" avro-schema-uri*)

Like %avro:schema, but the annotation value is a file URI that contains the Avro reader
schema. Relative URIs are resolved against the current working directory of the client's
local file system. Optional.

For example, %avro:schema-file("schemas/person.avsc").

You cannot combine this annotation with $avro:schema or $avro:schema-kv.

%avro:schema-kv("schema-name")
Like %avro: schema, but the annotation value is a fully qualified record name. The
record schema is retrieved from the Oracle NoSQL Database catalog. Optional.

For example, %avro:schema-kv ("org.example.PersonRecord").

Oracle XQuery for Hadoop Reference 6-5

http://avro.apache.org/docs/current/spec.html#Schema+Resolution
http://avro.apache.org/docs/current/spec.html#Schema+Resolution

Custom Functions for Reading Avro Container Files

You must specify the connection parameters to Oracle NoSQL Database when you use
this annotation. See "Oracle NoSQL Database Adapter Configuration Properties” on
page 6-44.

You cannot combine this annotation with %avro: schema or %avro:schema-file.

%avro:split-max(" split-size")

Specifies the maximum split size as either an integer or a string value. The split size
controls how the input file is divided into tasks. Hadoop calculates the split size as
max ($split-min, min($split-max, Sblock-size)). Optional.

In a string value, you can append K, k, M, m, G, or g to the value to indicate kilobytes,
megabytes, or gigabytes instead of bytes (the default unit). These qualifiers are not
case sensitive. The following examples are equivalent:

%avro:split-max(1024)
%avro:split-max("1024")
%avro:split-max ("1K")

%avro:split-min(" split-size")

Specifies the minimum split size as either an integer or a string value. The split size
controls how the input file is divided into tasks. Hadoop calculates the split size as
max ($split-min, min($split-max, Sblock-size)). Optional.

In a string value, you can append K, k, M, m, G, or g to the value to indicate kilobytes,
megabytes, or gigabytes instead of bytes (the default unit). These qualifiers are not
case sensitive. The following examples are equivalent:

%avro:split-min(1024)
%avro:split-min("1024")
%avro:split-min("1K")

6-6 Oracle Big Data Connectors User's Guide

Avro File Adapter

Custom Functions for Writing Avro Files

Signature

Annotations

You can use the following annotations to define functions that write Avro files.

Custom functions for writing Avro files must have the following signature:

declare %avro:put("avroxml") [additional annotations]
local :myFunctionName ($value as item()) external;

%avro:put("avroxml")
Declares the avroxml put function. Required.

An Avro schema must be specified using one of the following annotations:
s %avro:schema

m %avro:schema-file

m %avro:schema-kv

The input XML value is converted to an instance of the schema. See "Writing XML as
Avro" on page 6-14.

%avro:schema("avro-schema")
Specifies the schema of the files. For example:

%avro:schema ('

{

"type": "record",

"name": "Person",

"fields" : [
{"name": "full_name", "type": "string"}
{"name": "age", "type": ["int", "null"] }

)
You cannot combine this annotation with $avro:schema-file or $avro: schema-kv.

%avro:schema-file("avro-schema-uri")

Like %avro:schema, but the annotation value is a file URI that contains the Avro reader
schema. Relative URIs are resolved against the current working directory of the client's
local file system.

For example, %avro:schema-file("schemas/person.avsc").

You cannot combine this annotation with %avro: schema or %avro:schema-kv.

%avro:schema-kv("schema-name")
Like $avro: schema, but the annotation value is a fully qualified record name. The
record schema is retrieved from the Oracle NoSQL Database catalog.

For example, %avro:schema-kv ("org.example.PersonRecord").

You must specify the connection parameters to Oracle NoSQL Database when you use
this annotation. See "Oracle NoSQL Database Adapter Configuration Properties” on
page 6-44.

Oracle XQuery for Hadoop Reference 6-7

Custom Functions for Writing Avro Files

You cannot combine this annotation with %avro:schema or %avro:schema-file.

%avro:compress("method", [level]?)
Specifies the compression format used on the output.

The codec is one of the following string literal values:

» deflate: The level controls the trade-off between speed and compression. Valid
values are 1 to 9, where 1 is the fastest and 9 is the most compressed.

= snappy: This algorithm is designed for high speed and moderate compression.
The default is no compression.

The level is an integer value. It is optional and only supported when codec is deflate.
For example:

%avro:compress ("snappy")
%avro:compress ("deflate")
%avro:compress ("deflate", 3)

%avro:file(" name")
Specifies the output file name prefix. The default prefix is part.

Examples of Avro File Adapter Functions

For this example, the following text file is in HDFS:

mydata/ages.txt

john, 45
kelly, 36
laura,

mike, 27

Example 1 Converting a Text File to Avro
The following query converts the file into compressed Avro container files:

import module "oxh:text";

declare
%avro:put ("avroxml")
%avro:compress ("snappy")
%avro:schema ('

{

"type": "record",

"name": "AgeRec",

"fields" : [
{"name": "user", "type": "string"},
{"name": "age", "type": ["int", "null"] }

1

}
")
function local:put($Sarg as item()) external;

for $line in text:collection("mydata/ages.txt")
let $split := fn:tokenize($line, ",")
return
local:put(
<rec>
<user>{S$split[1]}</user>

6-8 Oracle Big Data Connectors User's Guide

Avro File Adapter

if ($split[2] castable as xs:int) then
<age>{S$split[2]}</age>
else
()
}
</rec>

)

The query generates an Avro file with the following records, represented here as JSON:
{"user":"john", "age":{"int":45}}

{"user":"kelly","age":{"int":36}}

{"user":"laura", "age":null}

{"user":"mike", "age":{"int":27}}

Example 2 Querying Records in Avro Container Files
The next query selects records in which the age is either null or greater than 30, from
the myoutput directory. The query in Example 1 generated the records.

import module "oxh:text";
import module "oxh:avro";

for $rec in avro:collection-avroxml ("myoutput/part*.avro")
where Srec/age/nilled() or $rec/age gt 30
return

text:put ($rec/user)

This query creates files that contain the following lines:

john
kelly
laura

Oracle XQuery for Hadoop Reference 6-9

About Converting Values Between Avro and XML

About Converting Values Between Avro and XML

This section describes how Oracle XQuery for Hadoop converts data between Avro
and XML:

= Reading Avro as XML
s Writing XML as Avro

Reading Avro as XML

Both the Avro file adapter and the Oracle NoSQL Database adapter have an avroxml
method, which you can use with the collection functions to read Avro records as XML.

After the Avro is converted to XML, you can query and transform the data using
XQuery.

The following topics describe how Oracle XQuery for Hadoop reads Avro:
= Reading Records

= Reading Maps

= Reading Arrays

= Reading Unions

= Reading Primitives

Reading Records

An Avro record is converted to an <oxh: item> element with one child element for each
field in the record.

For example, consider the following Avro schema:

{

"type": "record",

"name": "Person",

"fields" : [
{"name": "full_name", "type": "string"}
{"name": "age", "type": ["int", "null"] }

}

This is an instance of the record modeled as XML.:

<oxh:item>
<full_name>John Doe</full_name>
<age>46</age>

</oxh:item>

Converting Avro records to XML allows them to be queried using XQuery. The next
example queries an Avro container file named person.avro, which contains Person
records. The query converts the records to a CSV text file in which each line contains
the full_name and age values:

import module "oxh:avro";
import module "oxh:text";

for $x in avro:collection-avroxml ("person.avro")
return
text:put($x/full_name || "," || $x/age)

6-10 Oracle Big Data Connectors User's Guide

Avro File Adapter

Null values are converted to nilled elements. A nilled element has an xsi:nil
attribute set to true; it is always empty. You can use the XQuery fn:nilled function to
test if a record field is null. For example, the following query writes the name of
Person records that have a null value for age:

import module "oxh:avro";
import module "oxh:text";

for $x in avro:collection-avroxml ("person.avro")
where $x/age/nilled()
return

text:put ($x/full_name)

For nested records, the fields of the inner schema become child elements of the
element that corresponds to the field in the outer schema. For example, this schema
has a nested record:

{

"type": "record",
"name": "PersonAddress",
"fields" : [
{"name": "full name", "type": "string"},
{"name": "address", "type":
{ "type" : "record",
"name" : "Address",
"fields" : [
{ "name" : "street", "type" : "string" }
{ "name" : "city", "type" : "string" }

}

This is an instance of the record as XML.:

<oxh:item>
<full_name>John Doe</full_name>
<address>
<street>123 First St.</street>
<city>New York</city>
</address>
</oxh:item>

The following example queries an Avro container file named people-address.avro that
contains PersonAddress records, and writes the names of the people that live in New
York to a text file:

import module "oxh:avro";
import module "oxh:text";

for $person in avro:collection-avroxml ("examples/person-address.avro")
where Sperson/address/city eq "New York"
return

text:put ($person/full_name)

Reading Maps
Avro map values are converted to an element that contains one child <oxh:entry>
element for each entry in the map. For example, consider the following schema:

{

Oracle XQuery for Hadoop Reference 6-11

About Converting Values Between Avro and XML

"type": "record",
"name": "PersonProperties",
"fields" : [
{"name": "full_name", "type": "string"},
{"name": "properties", "type":
{"type": "map", "values": "string"}

This is an instance of the schema as XML.:

<oxh:item>
<full_name>John Doe</full_name>
<properties>
<oxh:entry key="employer">Oracle</oxh:entry>
<oxh:entry key="hair color">brown</oxh:entry>
<oxh:entry key="favorite author">George RR Martin</oxh:entry>
</properties>
</oxh:item>

The following example queries a file named person-properties.avro that contains
PersonAddress records, and writes the names of the people that are employed by
Oracle. The query shows how regular XPath expressions can retrieve map entries.
Moreover, you can use the avro:get function as a shortcut to retrieve map entries.

import module "oxh:avro";
import module "oxh:text";

for $person in avro:collection-avroxml ("person-properties.avro")
where $person/properties/oxh:entry[@key eq "employer"] eg "Oracle"
return

text:put (Sperson/full_name)

The following query uses the avro:get function to retrieve the employer entry. It is
equivalent to the previous query.

import module "oxh:avro";
import module "oxh:text";

for $person in avro:collection-avroxml ("person-properties.avro")
where Sperson/properties/avro:get("employer") eq "Oracle"
return

text:put ($Sperson/full_name)

You can use XQuery fn:nilled function to test for null values. This example returns
true if the map entry is null:

S$var/avro:get ("key") /nilled()

Reading Arrays

Oracle XQuery for Hadoop converts Avro array values to an element that contains a
child <oxh:item> element for each item in the array. For example, consider the
following schema:

{

"type": "record",

"name": "PersonScores",

"fields" : [
{"name": "full_name", "type": "string"},
{"name": "scores", "type":

6-12 Oracle Big Data Connectors User's Guide

Avro File Adapter

{"type": "array", "items": "int"}

}

This is an instance of the schema as XML.:

<oxh:item>
<full_name>John Doe</full_name>
<scores>
<oxh:item>128</oxh:item>
<oxh:item>151</oxh:item>
<oxh:item>110</oxh:item>
</scores>
</oxh:item>

The following example queries a file named person-scores.avro that contains
PersonScores records, and writes the sum and count of scores for each person:

import module "oxh:avro";
import module "oxh:text";

for $person in avro:collection-avroxml ("person-scores.avro")

let $scores := S$person/scores/*
return
text:put ($person/full_name || "," || sum($scores) || "," || count($scores))

You can access a specific element of an array by using a numeric XPath predicate. For
example, this path expression selects the second score. XPath indexing starts at 1 (not
0).

Sperson/scores/oxh:item[2]

Reading Unions

Oracle XQuery for Hadoop converts an instance of an Avro union type based on the
actual member type of the value. The name of the member type is added as an XML
avro:type attribute to the enclosing element, which ensures that queries can
distinguish between instances of different member types. However, the attribute is not
added for trivial unions where there are only two member types and one of them is
null.

For example, consider the following union of two records:

[

"type": "record",
"name": "Personl",
"fields" : [
{"name": "full name", "type": "string"}
1
}
{
"type": "record",
"name": "Person2",
"fields" : [
{"name": "fname", "type": "string"}

Oracle XQuery for Hadoop Reference 6-13

About Converting Values Between Avro and XML

This is an instance of the schema as XML.:

<oxh:item avro:type="Person2">
<fname>John Doe</fname>
</oxh:item>

The following example queries a file named person-union.avro that contains instances
of the previous union schema, and writes the names of the people from both record
types to a text file:

import module "oxh:avro";
import module "oxh:text";

for $person in avro:collection-avroxml ("examples/person-union.avro")
return
if (Sperson/@avro:type eq "Personl") then
text:put ($person/full_name)
else if ($person/@avro:type eg "Person2") then
text:put (Sperson/fname)
else
error (xs:QName ("UNEXPECTED"), "Unexpected record type:" ||
Sperson/@avro: type)

Reading Primitives
Table 6-1 shows how Oracle XQuery for Hadoop maps Avro primitive types to
XQuery atomic types.

Table 6-1 Mapping Avro Primitive Types to XQuery Atomic Types

Avro XQuery
boolean xs:boolean
int xs:int

long xs:long
float xs:float
double xs:double
bytes xs:hexBinary
string xs:string

Avro null values are mapped to empty nilled elements. To distinguish between a null
string value and an empty string value, use the XQuery nilled function. This path
expression only returns true if the field value is null:

Srecord/field/nilled()

Avro fixed values are mapped to xs:hexBinary, and enums are mapped to xs:string.

Writing XML as Avro

Both the Avro file adapter and the Oracle NoSQL Database adapter have an avroxml
method, which you can use with the put functions to write XML as Avro. The
following topics describe how the XML is converted to an Avro instance:

= Writing Records
s Writing Maps
s Writing Arrays

6-14 Oracle Big Data Connectors User's Guide

Avro File Adapter

= Writing Unions
s Writing Primitives

Writing Records

Oracle XQuery for Hadoop maps the XML to an Avro record schema by matching the
child element names to the field names of the record. For example, consider the
following Avro schema:

{

"type": "record",

"name": "Person",

"fields" : [
{"name": "full _name", "type": "string"},
{"name": "age", "type": ["int", "null"] }

}

You can use the following XML element to write an instance of this record in which the
full_name field is John Doe and the age field is 46. The name of the root element
(Person) is inconsequential. Only the names of the child elements are used to map to
the Avro record fields (full_name and age).

<person>
<full_name>John Doe</full_name>
<age>46</age>

</person>

The next example uses the following CSV file named people.csv:

John Doe, 46
Jane Doe, 37

This query converts values from the CSV file to Avro Person records:

import module "oxh:avro";
import module "oxh:text";

declare
%avro:put ("avroxml")
%avro:schema ('

{

"type": "record",

"name": "Person",

"fields" : [
{"name": "full_name", "type": "string"},
{"name": "age", "type": ["int", "null"] }

]

}
")
function local:put-person(Sperson as element()) external;

for $line in text:collection("people.csv")
let $split := tokenize($line, ",")
return
local:put-person(
<person>
<full_name>{S$split[1]}</full_name>

Oracle XQuery for Hadoop Reference 6-15

About Converting Values Between Avro and XML

<age>{S$split[2]}</age>
</person>

)

For null values, you can omit the element or set the xsi:nil="true" attribute. For
example, this modified query sets age to null when the value is not numeric:

for $line in text:collection("people.csv")
let $split := tokenize($line, ",")

return
local:put-person (
<person>
<full_name>{$split[1]}</full_name>
{
if ($split[2] castable as xs:int) then
<age>{$split[2]}</age>
else
()
}
</person>

)

In the case of nested records, the values are obtained from nested elements. The next
example uses the following schema:

{

"type": "record",
"name": "PersonAddress",
"fields" : [
{"name": "full_name", "type": "string"},
{"name": "address", "type":
{ "type" : "record",
"name" : "Address",
"fields" : [
{ "name" : "street", "type" : "string" },
{ "name" : "city", "type" : "string" }

You can use following XML to write an instance of this record:

<person>
<full_name>John Doe</full_name>
<address>
<street>123 First St.</street>
<city>New York</city>
</address>
</person>

Writing Maps
Oracle XQuery for Hadoop converts XML to an Avro map with one map entry for each
<oxh:entry> child element. For example, consider the following schema:

{

6-16 Oracle Big Data Connectors User's Guide

Avro File Adapter

"type": "record",

"name": "PersonProperties",
"fields" : [
{"name": "full_name", "type": "string"},
{"name": "properties", "type":
{"type": "map", "values": "string"}

}

You can use the following XML element to write an instance of this schema in which
the full_name field is John Doe, and the properties field is set to a map with three
entries:

<person>
<full_name>John Doe</full_name>
<properties>
<oxh:entry key="hair color">brown</oxh:entry>
<oxh:entry key="favorite author">George RR Martin</oxh:entry>
<oxh:entry key="employer">0Oracle</oxh:entry>
</properties>
</person>

Writing Arrays
Oracle XQuery for Hadoop converts XML to an Avro array with one item for each
<oxh:item> child element. For example, consider the following schema:

{

"type": "record",
"name": "PersonScores",
"fields" : [
{"name": "full_name", "type": "string"},
{"name": "scores", "type":
{"type": "array", "items": "int"}

}

You can use the following XML element to write an instance of this schema in which
the full_name field is John Doe and the scores field is set to [128, 151, 110]:

<person>
<full_name>John Doe</full_name>
<scores>
<oxh:item>128</oxh:item>
<oxh:item>151</oxh:item>
<oxh:item>110</oxh:item>
</scores>
</person>

Writing Unions
When writing an Avro union type, Oracle XQuery for Hadoop bases the selection of a
member type on the value of the avro: type attribute.

This example uses the following schema:

[

"type": "record",
"name": "Personl",
"fields" : [

Oracle XQuery for Hadoop Reference 6-17

About Converting Values Between Avro and XML

{"name": "full name", "type": "string"}
]
}
{
"type": "record",
"name": "Person2",
"fields" : [
{"name": "fname", "type": "string"}

]

The following XML is mapped to an instance of the Personl record:

<person avro:type="Personl">
<full_name>John Doe</full_name>
</person>

This XML is mapped to an instance of the Person2 record:

<person avro:type="Person2">
<fname>John Doe</fname>
</person>

The avro: type attribute selects the member type of the union. For trivial unions that
contain a null and one other type, the avro: type attribute is unnecessary. If the
member type cannot be determined, then an error is raised.

Writing Primitives
To map primitive values, Oracle XQuery for Hadoop uses the equivalent data types

shown in Table 6-1 to cast an XML value to the corresponding Avro type. If the value
cannot be converted to the Avro type, an error is raised.

This example uses the following schema:

{

"type": "record",

"name": "Person'",

"fields" : [
{"name": "full_name", "type": "string"}
{"name": "age", "type": ["int", "null"] }

}

Attempting to map the following XML to an instance to this schema raises an error,
because the string value apple cannot be converted to an int:

<person>
<full_name>John Doe</full_name>
<age>apple</age>

</person>

6-18 Oracle Big Data Connectors User's Guide

Oracle Database Adapter

Oracle Database Adapter

The Oracle Database adapter provides custom functions for loading data into tables in
Oracle Database.

A custom put function supported by this adapter automatically calls Oracle Loader for
Hadoop at run time, either to load the data immediately or to output it to HDFS. You
can declare and use multiple custom Oracle Database adapter put functions within a
single query. For example, you might load data into different tables or into different
Oracle databases with a single query.

Ensure that Oracle Loader for Hadoop is installed on your system, and that the OLH_
HOME environment variable is set to the installation directory. See Steps 1 to 3 "Installing
Oracle Loader for Hadoop" on page 1-12. Although not required, you might find it
helpful to familiarize yourself with Oracle Loader for Hadoop before using this
adapter.

The Oracle Database adapter is described in the following topics:
s Custom Functions for Writing to Oracle Database

= Y%oracle-property Annotations and Corresponding Oracle Loader for Hadoop
Configuration Properties

See Also:

= "Software Requirements" on page 1-12 for the supported versions
of Oracle Database

» Chapter 3, "Oracle Loader for Hadoop"

Oracle XQuery for Hadoop Reference 6-19

Custom Functions for Writing to Oracle Database

Custom Functions for Writing to Oracle Database

Signature

Annotations

You can use the following annotations to define functions that write to tables in an
Oracle database either directly or by generating binary or text files for subsequent
loading with another utility, such as SQL*Loader.

Custom functions for writing to Oracle database tables must have the following
signature:

declare %oracle:put(["jdbc" | "oci" | "text" | "datapump"])
[$oracle:columns (coll [, col2...])] [%oracle-property annotations]
function local:myPut($columnl [as xs:allowed_type_name[?]], [Scolumn2 [as
xs:allowed_type_name[?]], ...]) external;

%oracle:put(" output_mode"?)
Declares the put function and the output mode. Required.

The optional output_mode parameter can be one of the following string literal values:
= jdbc: Writes to an Oracle database table using a JDBC connection. Default.
See "JDBC Output Format" on page 3-17.

» oci: Writes to an Oracle database table using an Oracle Call Interface (OCI)
connection.

See "Oracle OCI Direct Path Output Format" on page 3-18.

= datapump: Creates Data Pump files and associated scripts in HDFS for subsequent
loading with another utility.

See "Oracle Data Pump Output Format" on page 3-20.
= text: Creates delimited text files and associated scripts in HDFS
See "Delimited Text Output Format" on page 3-19.

To write directly to an Oracle database table using either JDBC or OCI, all systems
involved in processing the query must be able to connect to the Oracle Database
system. See "About the Modes of Operation" on page 3-2.

%oracle:columns(col1 [, col2...])

Identifies a selection of one or more column names in the target table. The order of
column names corresponds to the order of the function parameters. See "Parameters"
on page 6-21. Optional.

This annotation supports loading a subset of the table columns. If omitted, the put
function attempts to load all columns of the target table.

%oracle-property:property _name (value)

Controls various aspects of connecting to the database and writing data. See
"%%oracle-property Annotations and Corresponding Oracle Loader for Hadoop
Configuration Properties” on page 6-26 for descriptions of the supported properties.
You can specify multiple $oracle-property annotations.

These annotations correspond to the Oracle Loader for Hadoop configuration
properties. Every $oracle-property annotation has an equivalent Oracle Loader for

6-20 Oracle Big Data Connectors User's Guide

Oracle Database Adapter

Parameters

Hadoop configuration property, which you can specify in a configuration file passed to
Hadoop with the generic -conf option. See "Running a Query" on page 5-13.

The $oracle-property annotations are optional. However, the various loading
scenarios require you to specify some of them or their equivalent configuration
properties. For example, to load data into an Oracle database using JDBC or OCI, you
must specify the target table and the connection information.

The following example specifies a target table named VISITS, a user name of db, a
password of password, and the URL connection string:

%oracle-property:targetTable('visits')

%$oracle-property:connection.user('db')
%$oracle-property:connection.password('password')

%oracle-property:connection.url ('jdbc:oracle:thin:@//localhost:1521/orcl.example.c
om')

$column1i [as xs:allowed_type_name[?]], [$column2 [as xs:allowed_type_
name[?]]....]

Enter a parameter for each column in the same order as the Oracle table columns to
load all columns, or use the $oracle:columns annotation to load selected columns.

Because the correlation between parameters and database columns is positional, the
name of the parameter (columnl in the parameter syntax) is not required to match the
name of the database column.

You can omit the explicit as xs:allowed_type_name type declaration for any
parameter. For example, you can declare the parameter corresponding to a NUMBER
column simply as $columnl. In this case, the parameter is automatically assigned an
XQuery type of item() *. At run time, the input value is cast to the allowed XQuery
type for the corresponding table column type, as described in Table 6-2. For example,
data values that are mapped to a column with a NUMBER data type are automatically
cast as xs:decimal. An error is raised if the cast fails.

Alternatively, you can specify the type or its subtype for any parameter. In this case,
compile-time type checking is performed. For example, you can declare a parameter
corresponding to a NUMBER column as $column as xs:decimal. You can also declare it
as any subtype of xs:decimal, such as xs: integer.

You can include the ? optional occurrence indicator for each specified parameter type.
This indicator allows the empty sequence to be passed as a parameter value at run
time, so that a null is inserted into the database table. Any occurrence indicator other
than ? raises a compile-time error.

Table 6-2 describes the appropriate mappings of XQuery data types with the
supported Oracle Database data types. In addition to the listed XQuery data types,
you can also use the subtypes, such as xs: integer instead of xs:decimal. Oracle data
types are more restrictive than XQuery data types, and these restrictions are identified
in the table.

Table 6-2 Data Type Mappings Between Oracle Database and XQuery

Database Type XQuery Type

VARCHAR2 Xs:string
Limited by the VARCHAR2 maximum size of 4000 bytes

Oracle XQuery for Hadoop Reference 6-21

Custom Functions for Writing to Oracle Database

Table 6-2 (Cont.) Data Type Mappings Between Oracle Database and XQuery

Database Type XQuery Type
CHAR Xs:string
Limited by the CHAR maximum size of 2000 bytes
NVARCHAR?2 xs:string
Limited by the NVARCHAR2 maximum size of 4000 bytes
NCHAR Xs:string
Limited by the NCHAR maximum size of 2000 bytes
DATE xs:dateTime
Limited to the range of January 1, 4712 BC to December 31,
9999 CE. If a time zone is specified in the xs:dateTime value,
then the time zone information is dropped. Fractional seconds
are also dropped. A time value of 24:00:00 is not valid.
TIMESTAMP xs:dateTime

Limited to the range of January 1, 4712 BC to December 31,
9999 CE. If a time zone is specified in the xs:dateTime value,
then the time zone information is dropped. Fractional seconds
are limited to a precision of 0 to 9 digits. A time value of
24:00:00 is not valid.

TIMESTAMP W LOCAL TIME
ZONE

xs:dateTime

Limited to the range of January 1, 4712 BC to December 31,
9999 CE. In the offset from UTC, the time-zone hour field is
limited to -12:00 to 14:00. Fractional seconds are limited to a
precision of 0 to 9 digits.

See "About Session Time Zones" on page 6-23.

TIMESTAMP W TIME ZONE

xs:dateTime

Limited to the range of January 1, 4712 BC to December 31,

9999 CE. In the offset from UTC, the time-zone hour field is
limited to -12:00 to 14:00. Fractional seconds are limited to a
precision of 0 to 9 digits.

See "About Session Time Zones" on page 6-23.

INTERVAL DAY TO SECOND

xs:dateTimeDuration

The day and fractional seconds are limited by a precision of 0
to 9 digits each. The hour is limited to a range of 0 to 23, and
minutes and seconds are limited to a range of 0 to 59.

INTERVAL YEAR TO MONTH

Xs:yearMonthDuration

The year is limited by a precision of 0 to 9 digits, and the
month is limited to a range of 0 to 11.

BINARY_FLOAT

xs:float

BINARY_DOUBLE

xs:double

NUMBER xs:decimal
Limited by the NUMBER precision of 1 to 38 decimal digits and
scale of -84 to 127 decimal digits.

FLOAT xs:decimal
Limited by the FLOAT precision of 1 to 126 binary digits

RAW Xs:hexBinary

Limit by the RAW maximum size of 2000 bytes

6-22 Oracle Big Data Connectors User's Guide

Oracle Database Adapter

Notes

About Session Time Zones

If an xs:dateTime value with no time zone is loaded into TIMESTAMP W TIME ZONE or
TIMESTAMP W LOCAL TIME ZONE, then the time zone is set to the value of the
sessionTimeZone parameter, which defaults to the JVM time zone. Using Oracle
XQuery for Hadoop, you can set the sessionTimeZone property, as described in
"%oracle-property Annotations and Corresponding Oracle Loader for Hadoop
Configuration Properties" on page 6-26.

With JDBC or OCI output modes, the Oracle Database Adapter loads data directly into
the database table. It also creates a directory with the same name as the custom put
function name, under the query output directory. For example, if your query output
directory is myoutput, and your custom function is myPut, then the myoutput/myPut
directory is created.

For every custom Oracle Database Adapter put function, a separate directory is
created. This directory contains output produced by the Oracle Loader for Hadoop job.
When you use datapump or text output modes, the data files are written to this
directory. The control and SQL scripts for loading the files are written to the _olh
subdirectory, such as myoutput/myPut/_olh.

For descriptions of the generated files, see "Delimited Text Output Format" on
page 3-19 and "Oracle Data Pump Output Format" on page 3-20.

Examples of Oracle Database Adapter Functions

These examples use following text files in HDFS. The files contain a log of visits to
different web pages. Each line represents a visit to a web page and contains the time,
user name, and page visited.

mydata/visitsl.log

2013-10-28T06:00:00, john, index.html, 200
2013-10-28T08:30:02, kelly, index.html, 200
2013-10-28T08:32:50, kelly, about.html, 200
2013-10-30T10:00:10, mike, index.html, 401

mydata/visits2.log

2013-10-30T10:00:01, john, index.html, 200
2013-10-30T10:05:20, john, about.html, 200
2013-11-01T08:00:08, laura, index.html, 200
2013-11-04T06:12:51, kelly, index.html, 200
2013-11-04T06:12:40, kelly, contact.html, 200

The examples also uses the following file in HDFS, which contains anonymous page
visits.

mydata/anonvisits.log

2011-10-30T10:01:01, index.html, 401
2011-11-04T06:15:40, contact.html, 401

The VISITS table in the Oracle database is created with this SQL command:

CREATE TABLE visits (time TIMESTAMP, name VARCHAR2(15), page VARCHAR2 (15), code
NUMBER)

Oracle XQuery for Hadoop Reference 6-23

Custom Functions for Writing to Oracle Database

Example 1 Loading All Columns

The first query loads all information related to the page visit (time of visit, user name,
page visited, and status code) to the VISITS table. In case of anonymous access, the
user name is missing, so the query specifies () to insert a null into the table. The target
table name, user name, password, and connection URL are specified with
%oracle-property annotations.

While the example uses a clear-text user name and password, Oracle recommends that
you use a wallet instead for security. You can configure an Oracle wallet using either
Oracle Loader for Hadoop properties or their equivalent $oracle-property
annotations. The specific properties that you must set are described in "Providing the
Connection Details for Online Database Mode" on page 3-8.

import module "oxh:text";

declare
%oracle:put
%oracle-property:targetTable('visits')
%oracle-property:connection.user('db")
%oracle-property:connection.password('password')
%oracle-property:connection.url ('jdbc:oracle:thin:@//localhost:1521/orcl.exampl
e.com')
function local:myPut(Scl, $c2, $c3, S$Scd) external;

for $line in text:collection("*visits*.log")
let $split := fn:tokenize($line, "\s*,\s*")
return
if (count($split) > 3) then
local :myPut (xs:dateTime (Ssplit[1]), S$split[2], $split[3], Ssplit[4])
else
local:myPut (xs:dateTime (Ssplit[1]), (), S$split[2], S$split[3])

The VISITS table contains the following data after the query runs:

TIME NAME PAGE CODE
30-0CT-13 10.00.01.000000 AM john index.html 200
30-0CT-13 10.05.20.000000 AM john about.html 200
01-NOV-13 08.00.08.000000 AM laura index.html 200
04-NOV-13 06.12.51.000000 AM kelly index.html 200
04-NOV-13 06.12.40.000000 AM kelly contact.html 200
28-0CT-13 06.00.00.000000 AM john index.html 200
28-0CT-13 08.30.02.000000 AM kelly index.html 200
28-0CT-13 08.32.50.000000 AM kelly about.html 200
30-0CT-13 10.00.10.000000 AM mike index.html 401
30-0CT-11 10.01.01.000000 AM index.html 401
04-NOV-11 06.15.40.000000 AM contact.html 401

Example 2 Loading Selected Columns

This example uses the $oracle:columns annotation to load only the time and name
columns of the table. It also loads only visits by john.

The column names specified in $oracle:columns are positionally correlated to the put
function parameters. Data values provided for the $c1 parameter are loaded into the
TIME column, and data values provided for the $c2 parameter are loaded into the NAME
column.

import module "oxh:text";

declare

6-24 Oracle Big Data Connectors User's Guide

Oracle Database Adapter

%oracle:put
%oracle:columns ('time', 'name')
%oracle-property:targetTable('visits')
%oracle-property:connection.user('db"')
%oracle-property:connection.password ('password')
%oracle-property:connection.url ('jdbc:oracle:thin:@//localhost:1521/orcl.exampl
e.com')
function local:myPut(Scl, $c2) external;

for $line in text:collection("*visits*.log")
let $split := fn:tokenize($line, "\s*,\s*")
where $split[2] eqg 'john'
return
local :myPut (xs:dateTime ($Ssplit[1]), $split[2])

If the VISITS table is empty before the query runs, then it contains the following data
afterward:

30-0CT-13 10.00.01.000000 AM john
30-0CT-13 10.05.20.000000 AM john
28-0CT-13 06.00.00.000000 AM john

Oracle XQuery for Hadoop Reference 6-25

%oracle-property Annotations and Corresponding Oracle Loader for Hadoop Configuration Properties

%oracle-property Annotations and Corresponding Oracle Loader for Hadoop
Configuration Properties

When you use the Oracle Database adapter of Oracle XQuery for Hadoop, you
indirectly use Oracle Loader for Hadoop. Oracle Loader for Hadoop defines
configuration properties that control various aspects of connecting to Oracle Database
and writing data. Oracle XQuery for Hadoop supports many of these properties. All
supported properties are listed in Table 6-3.

In Oracle XQuery for Hadoop, you can specify these properties with the generic -conf
and -D Hadoop command-line options, just like you specify them when you use
Oracle Loader for Hadoop directly. Alternatively, you can specify these properties as
custom put function annotations with the $oracle-property prefix.

When you specify a property with the Hadoop options, it applies to all custom Oracle
Database Adapter put functions in your query. When you specify it as an
$oracle-property annotation, it applies only to the particular custom put function
that has this annotation.

For example, this annotation sets the target table to VISITS only for the particular put
function that has the annotation in the declaration.

%oracle-property:connection.url ('visits')

Alternatively, you can specify the table with -D by using the corresponding property
name. This property sets the target table to VISITS for all Oracle Database adapter put
functions in your query,

-D oracle.hadoop.loader.targetTable=visits

This flexibility is provided for convenience. For example, if a query has multiple put
functions, each writing to a different table in the same database, you might specify the
properties like this:

s The database connection URL in the oracle.hadoop.loader.connection.url
property in the configuration file. Then identify the configuration file using the
-conf option, thereby applying it to all put functions in the query.

» The different table names using the $oracle-property:targetTable annotation in
each put function.

If you already use Oracle Loader for Hadoop and have a configuration file, you can
simply copy-and-paste these properties into the Oracle XQuery for Hadoop
configuration file and identify it to Hadoop with the -conf option.

Table 6-3 identifies the annotations and their equivalent Oracle Loader for Hadoop
properties. Oracle XQuery for Hadoop only supports the Oracle Loader for Hadoop
properties listed in this table.

Table 6-3 %oracle-property Annotations and Corresponding Oracle Loader for Hadoop
Configuration Properties

Annotation Property

%oracle-property:targetTable oracle.hadoop.loader.targetTable
%$oracle-property:connection.user oracle.hadoop.loader.connection.user
%oracle-property:connection.password oracle.hadoop.loader.connection.password
%oracle-property:connection.url oracle.hadoop.loader.connection.url

6-26 Oracle Big Data Connectors User's Guide

Oracle Database Adapter

Table 6-3 (Cont.) %oracle-property Annotations and Corresponding Oracle Loader for
Hadoop Configuration Properties

Annotation Property
%oracle-property:connection.wallet_ oracle.hadoop.loader.connection.wallet_
location location
%oracle-property:connection.tns_admin oracle.hadoop.loader.connection.tns_
admin
%oracle-property:connection. tnsEntryName oracle.hadoop.loader.connection.tnsEntry
Name
%oracle-property:connection.defaultExecu oracle.hadoop.loader.connection.defaultE
teBatch xecuteBatch
%oracle-property:connection.oci_url oracle.hadoop.loader.connection.oci_url
%oracle-property:connection.sessionTimeZ oracle.hadoop.loader.connection.sessionT
one imeZone
%$oracle-property:extTabDirectoryName oracle.hadoop.loader.extTabDirectoryName
%oracle-property:input.initialFieldEnclo oracle.hadoop.loader.input.initialFieldE
ser ncloser
%oracle-property:output.escapeEnclosers oracle.hadoop.loader.output.escapeEnclos
ers
%oracle-property:output.fieldTerminator oracle.hadoop.loader.output.fieldTermina
tor
%oracle-property:output.granuleSize oracle.hadoop.loader.output.granuleSize
%oracle-property:output.initialFieldEncl oracle.hadoop.loader.output.initialField
oser Encloser
%oracle-property:output.trailingFieldEnc oracle.hadoop.loader.output.trailingFiel
loser dEncloser
%oracle-property:sampler.enableSampling oracle.hadoop.loader.sampler.enableSampl
ing
%oracle-property:sampler.hintMaxSplitSiz oracle.hadoop.loader.sampler.hintMaxSpli
e tSize
%oracle-property:sampler.hintNumMapTask oracle.hadoop.loader.sampler.hintNumMapT
asks
%oracle-property:sampler.loadCI oracle.hadoop.loader.sampler.loadCI
%oracle-property:sampler.maxHeapBytes oracle.hadoop.loader.sampler.maxHeapByte
S
%oracle-property:sampler.maxLoadFactor oracle.hadoop.loader.sampler.maxLoadFact
or
%oracle-property:sampler.maxSamplesPct oracle.hadoop.loader.sampler.maxSamplesP
ct
%$oracle-property:sampler.minSplits oracle.hadoop.loader.sampler.minSplits
%oracle-property:sampler.numThreads oracle.hadoop.loader.sampler.numThreads
%oracle-property:tableMetadataFile oracle.hadoop.loader.tableMetadataFile
%oracle-property:loadByPartition oracle.hadoop.loader.loadByPartition
%oracle-property:enableSorting oracle.hadoop.loader.enableSorting
$oracle-property:sortKey oracle.hadoop.loader.sortKey
$oracle-property:rejectLimit oracle.hadoop.loader.rejectLimit

Oracle XQuery for Hadoop Reference 6-27

%oracle-property Annotations and Corresponding Oracle Loader for Hadoop Configuration Properties

Table 6-3 (Cont.) %oracle-property Annotations and Corresponding Oracle Loader for
Hadoop Configuration Properties

Annotation Property

%oracle-property:badRecordFlushInterval oracle.hadoop.loader.badRecordFlushInter
val

%$oracle-property:compressionFactors oracle.hadoop.loader.compressionFactors

%oracle-property:logBadRecords oracle.hadoop.loader.logBadRecords

%oracle-property:dirpathBufsize oracle.hadoop.loader.output.dirpathBufsi
ze

6-28 Oracle Big Data Connectors User's Guide

Oracle NoSQL Database Adapter

Oracle NoSQL Database Adapter

This adapter provides functions to read and write values stored in Oracle NoSQL
Database.

This adapter is described in the following topics:

» Prerequisites for Using the Oracle NoSQL Database Adapter

s Built-in Functions for Reading from and Writing to Oracle NoSQL Database
s Custom Functions for Reading Values from Oracle NoSQL Database

s Custom Functions for Retrieving Single Values from Oracle NoSQL Database
s Custom Functions for Writing to Oracle NoSQL Database

s Oracle NoSQL Database Adapter Configuration Properties

Oracle XQuery for Hadoop Reference 6-29

Prerequisites for Using the Oracle NoSQL Database Adapter

Prerequisites for Using the Oracle NoSQL Database Adapter

Before you write queries that use the Oracle NoSQL Database adapter, you must
configure Oracle XQuery for Hadoop to use your Oracle NoSQL Database server.

You must set the following;:

= The KVHOME environment variable to the local directory containing the Oracle
NoSQL database lib directory.

s Theoracle.kv.hosts and oracle.kv.kvstore configuration properties.

You can set the configuration properties using either the -D or -conf arguments in the
hadoop command when you run the query. See "Running a Query" on page 5-13.

This example sets KVHOME and uses the Hadoop -D argument in a query to set
oracle.kv.kvstore:

$ export KVHOME=/local/path/to/kvstore/
$ hadoop jar SOXH_HOME/lib/oxh.jar -D oracle.kv.hosts=example.com:5000 -D
oracle.kv.kvstore=kvstore ./myquery.xq -output ./myoutput

See "Oracle NoSQL Database Adapter Configuration Properties" on page 6-44.

6-30 Oracle Big Data Connectors User's Guide

Oracle NoSQL Database Adapter

Built-in Functions for Reading from and Writing to Oracle NoSQL Database

To use the built-in functions in your query, you must import the Oracle NoSQL
Database module as follows

import module "oxh:kv";

The Oracle NoSQL Database module contains the following functions:
= kwv:collection-text

= kv:collection-avroxml
= kwv:collection-xml

= kv:collection-binxml
s kviput-text

= kv:put-xml

= kv:put-binxml

n kviget-text

s kv:get-avroxml

s kviget-xml

= kv:get-binxml

= kvikey-range

kv:collection-text

Accesses a collection of values in the database. Each value is decoded as UTF-8 and
returned as a string.

Signature
declare %$kv:collection("text") function
kv:collection-text (Sparent-key as xs:string?, $depth as xs:int?, S$subrange as
xs:string?) as xs:string* external;
Parameters
See "Parameters” on page 6-39.
Returns

One string for each value

kv:collection-text

This function is equivalent to kv:collection-text ($parent-key, $depth, ()).

Signature

declare %kv:collection("text") function
kv:collection-text (Sparent-key as xs:string?, $depth as xs:int?) as xs:string*
external;

Oracle XQuery for Hadoop Reference 6-31

Built-in Functions for Reading from and Writing to Oracle NoSQL Database

kv:collection-text

This function is equivalent to kv:collection-text ($parent-key, ()).

Signature

declare %kv:collection("text") function
kv:collection-text (Sparent-key as xs:string?) as xs:string* external;

kv:collection-avroxml

Accesses a collection of values in the database. Each value is read as an Avro record
and returned as an XML element. The records are converted to XML as described in
"Reading Records" on page 6-10..

Signature
declare %$kv:collection("avroxml") function
kv:collection-avroxml ($parent-key as xs:string?, S$depth as xs:int?, $subrange
as xs:string?) as element()* external;
Parameters
See "Parameters" on page 6-39.
Returns

One XML element for each Avro record

kv:collection-avroxml

This function is equivalent to kv:collection-avroxml ($parent-key, $depth, ()).

Signature

declare %$kv:collection("avroxml") function
kv:collection-avroxml (Sparent-key as xs:string?, $depth as xs:int?) as
element () * external;

kv:collection-avroxml

This function is equivalent to kv:collection-avroxml ($parent-key, ()).

Signature

declare %$kv:collection("avroxml") function
kv:collection-avroxml (Sparent-key as xs:string?) as element()* external;

kv:collection-xml

Accesses a collection of values in the database. Each value is read as a sequence of
bytes and parsed as XML.

Signature

declare %$kv:collection("xml") function
kv:collection-xml (Sparent-key as xs:string?, $depth as xs:int?, $subrange as
xs:string?) as document-node()* external;

6-32 Oracle Big Data Connectors User's Guide

Oracle NoSQL Database Adapter

Parameters
See "Parameters" on page 6-39.

Returns
One XML document for each value.

kv:collection-xml

This function is equivalent to kv:collection-xml ($parent-key, $depth, ()).

Signature

declare %$kv:collection("xml") function
kv:collection-xml (Sparent-key as xs:string?, S$depth as xs:int?) as
document-node () * external;

kv:collection-xml

This function is equivalent to kv:collection-xml ($parent-key, ()).

Signature

declare %kv:collection("xml") function
kv:collection-xml (Sparent-key as xs:string?) as document-node()* external;

kv:collection-binxml

Accesses a collection of values in the database. Each value is read as XDK binary XML
and returned as an XML document.

Signature
declare %$kv:collection("binxml") function
kv:collection-binxml (Sparent-key as xs:string?, S$depth as xs:int?, S$subrange as
xs:string?) as document-node()* external;
Parameters
See "Parameters" on page 6-39.
Returns
One XML document for each value.
See Also

Oracle XML Developer’s Kit Programmer’s Guide

kv:collection-binxml

This function is equivalent to kv:collection-binxml ($parent-key, $depth, ()).

Signature

declare %kv:collection("binxml") function
kv:collection-binxml (Sparent-key as xs:string?, $depth as xs:int?) as
document-node () * external;

Oracle XQuery for Hadoop Reference 6-33

Built-in Functions for Reading from and Writing to Oracle NoSQL Database

kv:collection-binxml

This function is equivalent to kv:collection-binxml ($Sparent-key, ()).

Signature

declare %kv:collection("binxml") function
kv:collection-binxml (Sparent-key as xs:string?) as document-node()* external;

kv:collection-binxml

This function is equivalent to kv:collection-binxml ($parent-key, ()).

Signature
declare %$kv:collection("binxml") function
kv:collection-binxml ($parent-key as xs:string?) as document-node()* external;
kv:put-text
Writes a key-value pair. The $value is encoded as UTF-8.
Signature
declare %kv:put("text") function
kv:put-text (Skey as xs:string, $value as xs:string) external;
kv:put-xml
Writes a key/value pair. The $xml is serialized and encoded as UTE-8.
Signature
declare %kv:put("xml") function
kv:put-xml ($key as xs:string, $xml as node()) external;
kv:put-binxml
Puts a key/value pair. The $xml is encoded as XDK binary XML. See Oracle XML
Developer’s Kit Programmer’s Guide.
Signature
declare %kv:putkv:put-binxml ("binxml") function
(Skey as xs:string, $xml as node()) external;
kv:get-text
Obtains the value associated with the key. The value is decoded as UTE-8 and returned
as a string.
Signature
declare %kv:get("text") function
kv:get-text (Skey as xs:string) as xs:string? external;
kv:get-avroxml

Obtains the value associated with the key. The value is read as an Avro record and
returned as an XML element. The records are converted to XML as described in
"Reading Records" on page 6-10..

6-34 Oracle Big Data Connectors User's Guide

Oracle NoSQL Database Adapter

Signature

kv:get-xml

kv:get-binxml

Signature

See Also

kv:key-range

Signature

kv:key-range

Signature

Parameters

declare %kv:get("avroxml") function
kv:get-avroxml (Skey as xs:string) as element()? external;

Obtains the value associated with the key. The value is read as a sequence of bytes and
parsed as XML.

declare %kv:get("xml") function
kv:get-xml ($Skey as xs:string) as document-node()? external;

Obtains the value associated with the key. The value is read as XDK binary XML and
returned as an XML document.

declare %kv:get("binxml") function
kv:get-binxml (Skey as xs:string) as document-node()? external;

Oracle XML Developer’s Kit Programmer’s Guide

Defines a prefix range. The prefix defines both the lower and upper inclusive
boundaries.

Use this function as the subrange argument of a kv:collection function.

kv:key-range (Sprefix as xs:string) as xs:string;

Specifies a key range.

Use this function as the subrange argument of a kv: collection function.

kv:key-range ($start as xs:string, S$start-inclusive as xs:boolean, S$end as
xs:string, $end-inclusive as xs:boolean) as xXs:string;

start
Defines the lower boundary of the key range.

start-inclusive
A value of true includes $start in the range, or false omits it.

end
Defines the upper boundary of the key range. It must be greater than $start.

Oracle XQuery for Hadoop Reference 6-35

Built-in Functions for Reading from and Writing to Oracle NoSQL Database

end-inclusive
A value of true includes send in the range, or false omits it.

Oracle NoSQL Database Adapter Examples

Example 1 Writing and Reading Text in Oracle NoSQL Database

This example uses the following text file is in HDFS. The file contains user profile
information such as user ID, full name, and age, separated by a colon (:).

mydata/users.txt

john:John Doe:45
kelly:Kelly Johnson:32
laura:Laura Smith:
phil:Phil Johnson:27

The first query stores the lines of this text file in Oracle NoSQL Database as text values.

import module "oxh:text";
import module "oxh:kv";

for $line in text:collection("mydata/users.txt")
let $split := fn:tokenize($line, ":")
let $key := "/users/text/" || $split[1]
return
kv:put-text (key, Sline)

The next query reads the values from the database:

import module "oxh:text";
import module "oxh:kv";

for $value in kv:collection-text ("/users/text")

let $split := fn:tokenize(Svalue, ":")
where $split[2] eqg "Phil Johnson"
return

text:put ($value)

The query creates a text file that contains the following line:

phil:Phil Johnson:27

Example 2 Writing and Reading Avro in Oracle NoSQL Database
In this example, the following Avro schema is registered with Oracle NoSQL Database:

{

"type": "record",

"name": "User",

"namespace": "com.example",

"fields" : [
{"name": "id", "type": "string"},
{"name": "full_name", "type": "string"},
{"name": "age", "type": ["int", "null"] }

}

The next query writes the user names to the database as Avro records.

import module "oxh:text";

declare %kv:put ("avroxml") $%avro:schema-kv("com.example.User")

6-36 Oracle Big Data Connectors User's Guide

Oracle NoSQL Database Adapter

function local:put-user(Skey as xs:string, $value as node()) external;

for $line in text:collection("mydata/users.txt")
let $split := fn:tokenize($line, ":")
let $id := S$split[1]
let $key := "/users/avro/" || $id
return
local:put-user (
Skey,
<user>
<id>{s$id}</id>
<full_name>{$split[2]}</full_name>
{
if ($split[3] castable as xs:int) then
<age>{$split[3]}</age>
else
()
}
</user>

)

This query reads the values from the database:

import module "oxh:text";
import module "oxh:kv";

for Suser in kv:collection-avroxml ("/users/avro")
where Suser/age gt 30
return

text:put (Suser/full_name)

The query creates a text files with the following lines:

John Doe
Kelly Johnson

Oracle XQuery for Hadoop Reference 6-37

Custom Functions for Reading Values from Oracle NoSQL Database

Custom Functions for Reading Values from Oracle NoSQL Database

Signature

Annotations

You can use the following functions to read values from Oracle NoSQL Database.
These annotations provide additional functionality that is not available using the
built-in functions.

Custom functions for reading collections of NoSQL values must have one of the
following signatures:

declare %$kv:collection("text") [additional annotations]
function local:myFunctionName (Sparent-key as xs:string?, S$depth as xs:int?,
Ssubrange as xs:string?) as xs:string* external;

declare %kv:collection(["xml"|"binxml"]) [additional annotations]
function local:myFunctionName ($Sparent-key as xs:string?, $depth as xs:int?,
$subrange as xs:string?) as document-node()* external;

declare %$kv:collection("avroxml") [additional annotations]
function local:myFunctionName($parent-key as xs:string?, S$depth as xs:int?,
$subrange as xs:string?) as element()* external;

%kv:collection("method")
Declares the NoSQL Database collection function. Required.

The method parameter is one of the following values:

= text: Each value is decoded using the character set specified by the
%output : encoding annotation.

= avroxml: Each value is read as an Avro record and returned as an XML element.
The records are converted to XML as described in "Reading Records" on page 6-10.

= Dbinxml: Each value is read as XDK binary XML and returned as an XML
document.

= xml: Each value is parsed as XML, and returned as an XML document.

%kv:key("true" | "false")
Controls whether the key of a key-value pair is set as the document-uri of the returned
value. Specify true to return the key.

The default setting is true when method is xml, avroxml, or binxml, and false when it
is text. Text functions with this annotation set to true must be declared to return

text () ? instead of xs:string?. Atomic xs:string values are not associated with a
document node, but text nodes are. For example:

declare %kv:collection("text") %$kv:key("true")
function local:col ($parent-key as xs:string?) as text()* external;

When the key is returned, you can obtain its string representation by using the
kv:key () function. For example:

for $value in local:col(...)
let Skey := S$value/kv:key()
return ...

6-38 Oracle Big Data Connectors User's Guide

Oracle NoSQL Database Adapter

Parameters

%avro:schema-kv("schema-name")
Specifies the Avro reader schema. This annotation is valid only when method is
avroxml. Optional.

The schema-name is a fully qualified record name. The record schema is retrieved from
the Oracle NoSQL Database catalog. The record value is mapped to the reader schema.
For example, %avro:schema-kv ("org.example.PersonRecord").

See Also: For information about Avro schemas, the Oracle NoSQL
Database Getting Started Guide at

http://docs.oracle.com/cd/NOSQL/html /GettingStartedGuide/sch
emaevolution.html

%output:encoding
Specifies the character encoding of text values. UTF-8 is assumed when this annotation
is not used. The valid encodings are those supported by the JDK.

This annotation currently only applies to the text method. For XML files, the
document's encoding declaration is used if it is available.
See Also: "Supported Encodings" in the Oracle Java SE

documentation at

http://docs.oracle.com/javase/7/docs/technotes/guides/intl/e
ncoding.doc.html

Parameter 1: $parent-key as xs:string?

Specifies the parent key whose child KV pairs are returned by the function. The major
key path must be a partial path and the minor key path must be empty. An empty
sequence results in fetching all keys in the store.

See Also: For the format of the key, the Oracle NoSQL Database Java
Reference at
http://docs.oracle.com/cd/NOSQL/html/javadoc/oracle/kv/Key.h
tml#toString

Parameter 2: $depth as xs:int?
Specifies whether parents, children, descendants, or a combination are returned. The
following values are valid:

» kv:depth-parent-and-descendants (): Selects the parents and all descendants.

» kv:depth-children-only(): Selects only the immediately children, but not the
parent.

» kv:depth-descendants-only (): Selects all descendants, but not the parent.

» kv:depth-parent-and-children(): Selects the parent and the immediate children.
An empty sequence implies kv:depth-parent-and-descendants ().

This example selects all the descendants, but not the parent:

kv:collection-text ("/parent/key", kv:depth-descendants-only(),

Oracle XQuery for Hadoop Reference 6-39

http://docs.oracle.com/javase/7/docs/technotes/guides/intl/encoding.doc.html
http://docs.oracle.com/javase/7/docs/technotes/guides/intl/encoding.doc.html
http://docs.oracle.com/cd/NOSQL/html/GettingStartedGuide/schemaevolution.html
http://docs.oracle.com/cd/NOSQL/html/GettingStartedGuide/schemaevolution.html
http://docs.oracle.com/cd/NOSQL/html/javadoc/oracle/kv/Key.html#toString
http://docs.oracle.com/cd/NOSQL/html/javadoc/oracle/kv/Key.html#toString

Custom Functions for Reading Values from Oracle NoSQL Database

Parameter 3: $subRange as xs:string?
Specifies a subrange to further restrict the range under parentKey to the major path
components. The format of the string is:

<startType>/<start>/<end>/<endType>

The startType and endType are either I for inclusive or E for exclusive.
The start and end are the starting and ending key strings.

If the range does not have a lower boundary, then omit the leading startType/start
specification from the string representation. Similarly, if the range does not have an
upper boundary, then omit the trailing end/endType specification. A KeyRange requires
at least one boundary, thus at least one specification must be present in the string
representation.

The kv:key-range function provides a convenient way to create a range string.
The value can also be the empty sequence.

The following examples are valid subrange specifications:

Example Description

I/alpha/beta/E From alpha inclusive to beta exclusive
E//0123/T From "" exclusive to 0123 inclusive
I/chi/ From chi inclusive to infinity

E// From ™" exclusive to infinity

/chi/E From negative infinity to chi exclusive
/T From negative infinity to "" inclusive

6-40 Oracle Big Data Connectors User's Guide

Oracle NoSQL Database Adapter

Custom Functions for Retrieving Single Values from Oracle NoSQL Database

Signature

Annotations

The Oracle NoSQL Database adapter has get functions, which enable you to retrieve a
single value from the database. Unlike collection functions, calls to get functions are
not distributed across the cluster. When a get function is called, the value is retrieved
by a single task.

Custom get functions must have one of the following signatures:

declare %$kv:get("text") [additional annotations]
function local:myFunctionName($Skey as xs:string) as xs:string? external;

declare %kv:get("avroxml") [additional annotations]
function local:myFunctionName ($key as xs:string) as element()? external;

declare %kv:get(["xml"|'binxml"]) [additional annotations]
function local:myFunctionName ($key as xs:string) as document-node()?

%kv:get(" method")
Declares the NoSQL Database get function. Required.

The method parameter is one of the following values:

» text: The value is decoded using the character set specified by the
%output : encoding annotation.

= avroxml: The value is read as an Avro record and returned as an XML element.
The records are converted to XML as described in "Reading Records" on page 6-10.

= binxml: The value is read as XDK binary XML and returned as an XML document.

= xml: The value is parsed as XML, and returned as an XML document.

%kv:key("true" | "false")
Controls whether the key of a key-value pair is set as the document-uri of the returned
value. Specify true to return the key.

The default setting is true when method is xml, avroxml, or binxml, and false when it
is text. Text functions with this annotation set to true must be declared to return

text () ? instead of xs:string?. Atomic xs: string values are not associated with a
document node, but text nodes are.

When the key is returned, you can obtain its string representation by using the
kv:key () function.

%avro:schema-kv("schema-name")
Specifies the Avro reader schema. This annotation is valid only when method is
avroxml. Optional.

The schema-name is a fully qualified record name. The record schema is retrieved from
the Oracle NoSQL Database catalog. The record value is mapped to the reader schema.
For example, %avro:schema-kv ("org.example.PersonRecord").

Oracle XQuery for Hadoop Reference 6-41

Custom Functions for Retrieving Single Values from Oracle NoSQL Database

See Also: For information about Avro schemas, the Oracle NoSQL
Database Getting Started Guide at

http://docs.oracle.com/cd/NOSQL/html/GettingStartedGuide/sch

emaevolution.html

%output:encoding
Specifies the character encoding of text values. UTF-8 is assumed when this annotation
is not used. The valid encodings are those supported by the JDK.

This annotation currently only applies to the text method. For XML files, the document
encoding declaration is used, if it is available.

See Also: "Supported Encodings" in the Oracle Java SE
documentation at

http://docs.oracle.com/javase/7/docs/technotes/guides/intl/e
ncoding.doc.html

6-42 Oracle Big Data Connectors User's Guide

http://docs.oracle.com/cd/NOSQL/html/GettingStartedGuide/schemaevolution.html
http://docs.oracle.com/cd/NOSQL/html/GettingStartedGuide/schemaevolution.html
http://docs.oracle.com/javase/7/docs/technotes/guides/intl/encoding.doc.html
http://docs.oracle.com/javase/7/docs/technotes/guides/intl/encoding.doc.html

Oracle NoSQL Database Adapter

Custom Functions for Writing to Oracle NoSQL Database

Signature

Annotations

You can use the following annotations to define functions that write to Oracle NoSQL
Database.

Custom functions for writing to Oracle NoSQL Database must have one of the
following signatures:

declare %kv:put("text") function
local :myFunctionName ($key as xs:string, $value as xs:string) external;

declare %kv:put(["xml"|"binxml"|"avroxml"]) function
local :myFunctionName ($key as xs:string, $xml as node()) external;

%kv:put("method")
Declares the NoSQL Database module put function. Required.

The method determines how the value is stored. It must be one of the following values:

= text: $value is serialized and encoded using the character set specified by the
%output : encoding annotation.

= avroxml: $xml is mapped to an instance of the Avro record specified by the
%avro: schema-kv annotation. See "Writing XML as Avro" on page 6-14.

= Dbinxml: $xml is encoded as XDK binary XML

= xml: $xml is serialized and encoded using the character set specified by the
$output : encoding annotation. You can specify other XML serialization parameters
using %output: *.

%avro:schema-kv("schema-name")

Specifies the record schema of the values to be written. The annotation value is a fully
qualified record name. The record schema is retrieved from the Oracle NoSQL
Database catalog.

For example: %avro:schema-kv ("org.example.PersonRecord")

%output:*
A standard XQuery serialization parameter for the output method (text or XML)
specified in $kv:put. See "Serialization Annotations" on page 6-87.

See Also: "The Influence of Serialization Parameters" sections for
XML and text output methods in XSLT and XQuery Serialization 3.0 at

http://www.w3.org/TR/xslt-xquery-serialization-30/

Oracle XQuery for Hadoop Reference 6-43

Oracle NoSQL Database Adapter Configuration Properties

Oracle NoSQL Database Adapter Configuration Properties

Oracle XQuery for Hadoop uses the generic options for specifying configuration
properties in the Hadoop command. You can use the -conf option to identify
configuration files, and the -D option to specify individual properties. See "Running a
Query" on page 5-13.

You can set various configuration properties for the Oracle NoSQL Database adapter
that control the durability characteristics and timeout periods. You must set
oracle.kv.hosts and oracle.kv.kvstore.

The following properties configure the Oracle NoSQL Database adapter.

oracle.hadoop.xquery.kv.config.durability
Type: String
Default Value: NO_SYNC, NO_SYNC, SIMPLE_MAJORITY

Description: Defines the durability characteristics associated with $kv:put operations.
The value consists of three parts, which you specify in order and separate with
commas:

MasterPolicy, ReplicaPolicy, ReplicaAck

= MasterPolicy: The synchronization policy used when committing a transaction to
the master database. Set this part to one of the following constants:

NO_SYNC: Do not write or synchronously flush the log on a transaction commit.
SYNC: Write and synchronously flush the log on a transaction commit.

WRITE_NO_SYNC: Write but do not synchronously flush the log on a transaction
commit.

= ReplicaPolicy: The synchronization policy used when committing a transaction to
the replica databases. Set this part to NO_SYNC, SYNC, or WRITE_NO_SYNC, as
described under MasterPolicy.

» ReplicaAck: The acknowledgment policy used to obtain transaction
acknowledgments from the replica databases. Set this part to one of the following
constants:

ALL: All replicas must acknowledge that they have committed the transaction.

NONE: No transaction commit acknowledgments are required, and the master does
not wait for them.

SIMPLE_MAJORITY: A simple majority of replicas (such as 3 of 5) must acknowledge
that they have committed the transaction.

See Also: "Durability Guarantees" in Getting Started with Oracle
NoSQL Database at

http://docs.oracle.com/cd/NOSQL/html/GettingStartedGuide/dur
ability.html

oracle.hadoop.xquery.kv.config.requestLimit

Type: Comma-separated list of integer

Default Value: 100, 90, 80

6-44 Oracle Big Data Connectors User's Guide

http://docs.oracle.com/cd/NOSQL/html/GettingStartedGuide/durability.html
http://docs.oracle.com/cd/NOSQL/html/GettingStartedGuide/durability.html

Oracle NoSQL Database Adapter

Description: Limits the number of simultaneous requests to prevent nodes with long
service times from consuming all threads in the KV store client. The value consists of
three integers, which you specify in order and separate with commas:

maxActiveRequests, requestThresholdPercent, nodeLimitPercent

» maxActiveRequests: The maximum number of active requests permitted by the KV
client. This number is typically derived from the maximum number of threads that
the client has set aside for processing requests.

» requestThresholdPercent: The percentage of maxActiveRequests at which requests are
limited.

s nodeLimitPercent: The maximum number of active requests that can be associated
with a node when the number of active requests exceeds the threshold specified by
request ThresholdPercent.

oracle.hadoop.xquery.kv.config.requestTimeout
Type: Long

Default Value: 5000 ms

Description: Configures the request timeout period in milliseconds. The value must be
greater than zero (0).

oracle.hadoop.xquery.kv.config.socketOpenTimeout
Type: Long

Default Value: 5000 ms

Description: Configures the open timeout used when establishing sockets for client
requests, in milliseconds. Shorter timeouts result in more rapid failure detection and
recovery. The default open timeout is adequate for most applications. The value must
be greater than zero (0).

oracle.hadoop.xquery.kv.config.socketReadTimeout
Type: Long
Default Value: 30000 ms

Description: Configures the read timeout period associated with the sockets that make
client requests, in milliseconds. Shorter timeouts result in more rapid failure detection
and recovery. Nonetheless, the timeout period should be sufficient to allow the longest
timeout associated with a request.

oracle.kv.kvstore
Type: String

Default Value: Not defined

Description: The name of the KV store with the source data.

oracle.kv.hosts
Type: String

Default Value: Not defined

Description: An array of one or more hostname:port pairs that identify the hosts in the
KV store with the source data. Separate multiple pairs with commas.

oracle.kv.batchSize
Type: Key

Default Value: Not defined

Oracle XQuery for Hadoop Reference 6-45

Oracle NoSQL Database Adapter Configuration Properties

Description: The desired number of keys for the InputFormat to fetch during each
network round trip. A value of zero (0) sets the property to a default value.

oracle.kv.consistency
Type: Consistency

Default Value: NONE_REQUIRED

Description: The consistency guarantee for reading child key-value pairs. The
following keywords are valid values:

= ABSOLUTE: Requires the master to service the transaction so that consistency is
absolute.

= NONE_REQUIRED: Allows replicas to service the transaction, regardless of the state of
the replicas relative to the master.

oracle.kv.timeout
Type: Long

Default Value: Not defined

Description: Sets a maximum time interval in milliseconds for retrieving a selection of
key-value pairs. A value of zero (0) sets the property to its default value.

See Also: Oracle NoSQL Database Java API Reference at

http://docs.oracle.com/cd/NOSQL/html/javadoc/oracle/kv/hadoo
p/KVInputFormatBase.html

6-46 Oracle Big Data Connectors User's Guide

http://docs.oracle.com/cd/NOSQL/html/javadoc/oracle/kv/hadoop/KVInputFormatBase.html
http://docs.oracle.com/cd/NOSQL/html/javadoc/oracle/kv/hadoop/KVInputFormatBase.html

Sequence File Adapter

Sequence File Adapter

The sequence file adapter provides functions to read and write Hadoop sequence files.
A sequence file is a Hadoop-specific file format composed of key-value pairs.

The functions are described in the following topics:
s Built-in Functions for Reading and Writing Sequence Files
s Custom Functions for Reading Sequence Files

s Custom Functions for Writing Sequence Files

See Also: The Hadoop wiki for a description of Hadoop sequence
files at

http://wiki.apache.org/hadoop/SequenceFile

Oracle XQuery for Hadoop Reference 6-47

Built-in Functions for Reading and Writing Sequence Files

Built-in Functions for Reading and Writing Sequence Files

seq:collection

Signature

Parameters

Return Value

To use the built-in functions in your query, you must import the sequence file module
as follows:

import module "oxh:seq";

The sequence file module contains the following functions:
= seq:collection

= seq:collection-xml

= seq:collection-binxml

= seq:put

= seqput-xml

= seq:put-binxml

For examples, see "Examples of Sequence File Adapter Functions" on page 6-52.

Accesses a collection of sequence files in HDFS and returns the values as strings. The
files may be split up and processed in parallel by multiple tasks.

declare %seq:collection("text") function
seq:collection(Suris as xs:string*) as xs:string* external;

$uris

The sequence file URIs. The values in the sequence files must be either
org.apache.hadoop.io.Text or org.apache.hadoop.io.BytesWritable. For
BytesWritable values, the bytes are converted to a string using a UTF-8 decoder.

One string for each value in each file

seq:collection-xml

Signature

Parameters

Accesses a collection of sequence files in HDFS, parses each value as XML, and returns
it. Each file may be split up and processed in parallel by multiple tasks.

declare %seq:collection("xml") function
seq:collection-xml (Suris as xs:string*) as document-node()* external;

Suris
The sequence file URIs. The values in the sequence files must be either
org.apache.hadoop.io.Text or org.apache.hadoop.io.BytesWritable. For

6-48 Oracle Big Data Connectors User's Guide

Sequence File Adapter

Returns

BytesWritable values, the XML document encoding declaration is used, if it is
available.

One XML document for each value in each file.

seq:collection-binxml

Signature

Parameters

Returns

Notes

See Also

seq:put

Signature

Parameters

Returns

Accesses a collection of sequence files in the HDFS, reads each value as binary XML,
and returns it. Each file may be split up and processed in parallel by multiple tasks.

declare %seq:collection("binxml") function
seq:collection-binxml (Suris as xs:string*) as document-node()* external;

$uris
The sequence file URIs. The values in the sequence files must be
org.apache.hadoop.io.Bytesliritable. The bytes are decoded as binary XML.

One XML document for each value in each file

You can use this function to read files that were created by seq:put-binxml in a
previous query. See "seq:put-binxml" on page 6-51.

Oracle XML Developer’s Kit Programmer’s Guide

Writes the string value of a key-value pair to a sequence file in the output directory of
the query. The values are spread across one or more sequence files.

This function writes the values as org. apache.hadoop.io.Text, and sets the key class
to org.apache.hadoop.io.NullWritable because there are no key values.

declare %seq:put("text") function
seq:put (Svalue as xs:string) external;

$value
The string to write

empty-sequence ()

Oracle XQuery for Hadoop Reference 6-49

Built-in Functions for Reading and Writing Sequence Files

Notes

seq:put

Signature

Parameters

Returns

seq:put-xml

Signature

Parameters

Returns

Notes

The number of files created depends on how the query is distributed among tasks.
Each file has a name that starts with "part,” such as part-m-00000. You specify the
output directory when the query executes. See "Running a Query" on page 5-13.

Writes a key and string value to a sequence file in the output directory of the query.
The values are spread across one or more sequence files.

This function writes the keys and values as org.apache.hadoop.io.Text.

declare %seq:put("text") function
seq:put ($key as xs:string, $value as xXs:string) external;

$Skey
The key of a key-value pair

$value
The value of the key-value pair

empty-sequence ()

Writes an XML value to a sequence file in the output directory of the query. The values
are spread across one or more sequence files.

This function writes the values as org. apache.hadoop.io.Text, and sets the key class
to org.apache.hadoop.io.NullWritable because there are no key values.

declare %seq:put("xml") function
seq:put-xml (Sxml as node()) external;

$value
The XML to write

empty-sequence ()

The number of files created depends on how the query is distributed among tasks.
Each file has a name that starts with "part," such as part-m-00000. You specify the
output directory when the query executes. See "Running a Query" on page 5-13.

6-50 Oracle Big Data Connectors User's Guide

Sequence File Adapter

seq:put-xml

Signature

Parameters

Returns

Notes

seq:put-binxml

Signature

Parameters

Return Value

Notes

Writes a key and XML value to a sequence file in the output directory of the query. The
values are spread across one or more sequence files.

This function writes the keys and values as org.apache.hadoop.io.Text.

declare %seq:put("xml") function
seq:put-xml (Skey as xs:string, $xml as node()) external;

$Skey
The key of a key-value pair

$value
The value of a key-value pair

empty-sequence ()

The number of files created depends on how the query is distributed among tasks.
Each file has a name that starts with "part," such as part-m-00000. You specify the
output directory when the query executes. See "Running a Query" on page 5-13.

Encodes an XML value as binary XML and writes the resulting bytes to a sequence file
in the output directory of the query. The values are spread across one or more
sequence files.

This function writes the values as org.apache.hadoop.io.Bytesliritable, and sets the
key class to org.apache.hadoop.io.NullWritable because there are no key values.

declare %seq:put("binxml") function
seq:put-binxml ($xml as node()) external;

$value
The XML to write

empty-sequence ()

The number of files created depends on how the query is distributed among tasks.
Each file has a name that starts with "part,” such as part-m-00000. You specify the
output directory when the query executes. See "Running a Query" on page 5-13.

Oracle XQuery for Hadoop Reference 6-51

Built-in Functions for Reading and Writing Sequence Files

See Also

seq:put-binxml

Signature

Parameters

Returns

Notes

You can use the seq:collection-binxml function to read the files created by this
function. See "seq:collection-binxml" on page 6-49.

Oracle XML Developer’s Kit Programmer’s Guide

Encodes an XML value as binary XML and writes the resulting bytes to a sequence file
in the output directory of the query. The values are spread across one or more
sequence files.

This function writes the keys as org.apache.hadoop.1io.Text and the values as
org.apache.hadoop.io.BytesWritable.

declare %seq:put("binxml") function
seq:put-binxml (Skey as xs:string, S$xml as node()) external;

Skey
The key of a key-value pair

$value
The value to write

empty-sequence ()

The number of files created depends on how the query is distributed among tasks.
Each file has a name that starts with "part," such as part-m-00000. You specify the
output directory when the query executes. See "Running a Query" on page 5-13.

You can use the seq:collection-binxml function to read the files created by this
function. See "seq:collection-binxml" on page 6-49.

Examples of Sequence File Adapter Functions

This example queries three XML files in HDFS with the following contents. Each XML
file contains comments made by users on a specific day. Each comment can have zero
or more "likes" from other users.

mydata/commentsl.xml

<comments date="2013-12-30">
<comment 1d="12345" user="john" text="It is raining :("/>
<comment id="56789" user="kelly" text="I won the lottery!">
<like user="john"/>
<like user="mike"/>
</comment>
</comments>

mydata/comments2.xml

6-52 Oracle Big Data Connectors User's Guide

Sequence File Adapter

<comments date="2013-12-31">
<comment id="54321" user="mike" text="Happy New Year!">
<like user="laura"/>
</comment>
</comments>

mydata/comments3.xml

<comments date="2014-01-01">
<comment id="87654" user="mike" text="I don't feel so good."/>
<comment 1d="23456" user="john" text="What a beautiful day!">
<like user="kelly"/>
<like user="phil"/>
</comment>
</comments>

Example 1
The following query stores the comment elements in sequence files.

import module "oxh:seq";
import module "oxh:xmlf";

for Scomment in xmlf:collection("mydata/comments*.xml", "comment")
return
seq:put-xml (Scomment)

Example 2

The next query reads the sequence files generated by the previous query, which are
stored in an output directory named myoutput. The query then writes the names of
users who made multiple comments to a text file.

import module "oxh:seq";
import module "oxh:text";

for Scomment in seq:collection-xml ("myoutput/part*")/comment

let Suser := S$Scomment/@user
group by Suser
let $count := count ($Scomment)
where Scount gt 1
return
text:put($user || " " || Scount)

The text file created by the previous query contain the following lines:

john 2
mike 2

See "XML File Adapter" on page 6-68.

Oracle XQuery for Hadoop Reference 6-53

Custom Functions for Reading Sequence Files

Custom Functions for Reading Sequence Files

Signature

Annotations

You can use the following annotations to define functions that read collections of
sequence files. These annotations provide additional functionality that is not available
using the built-in functions.

Custom functions for reading sequence files must have one of the following
signatures:

declare %$seq:collection("text") [additional annotations]
function local:myFunctionName(Suris as xs:string*) as xs:string* external;

declare %seq:collection(["xml" | "binxml"]) [additional annotations]
function local:myFunctionName(Suris as xs:string*) as document-node () *
external;

%seq:collection([" method"])
Declares the sequence file collection function, which reads sequence files. Required.

The optional method parameter can be one of the following values:

= text: The values in the sequence files must be either org.apache.hadoop.io.Text
or org.apache.hadoop.io.BytesWritable!. They are returned as xs:string.
Default.

» xml: The values in the sequence files must be either org.apache.hadoop.1io.Text
or org.apache.hadoop.io.BytesWritable. The values are parsed as XML and
returned by the function.

= binxml: The values in the sequence files must be
org.apache.hadoop.io.BytesWritable. The values are read as XDK binary XML
and returned by the function. See the Oracle XML Developer’s Kit Programmer’s
Guide.

%output:encoding("charset")
Specifies the character encoding of the input files. The valid encodings are those
supported by the JDK. UTF-8 is the default encoding.

See Also: "Supported Encodings" in the Oracle Java SE
documentation at

http://docs.oracle.com/javase/7/docs/technotes/guides/intl/e
ncoding.doc.html

%seq:key("true" | "false")

Controls whether the key of a key-value pair is set as the document-uri of the returned
value. Specify true to return the keys. The default setting is true when method is
binxml or xml, and false when it is text.

Text functions with this annotation set to true must return text () * instead of
xs:string* because atomic xs:string is not associated with a document.

1 Bytes are decoded using the character set specified by the $output : encoding annotation.

6-54 Oracle Big Data Connectors User's Guide

See http://docs.oracle.com/javase/7/docs/technotes/guides/intl/encoding.doc.html.
See http://docs.oracle.com/javase/7/docs/technotes/guides/intl/encoding.doc.html.

Sequence File Adapter

When the keys are returned, you can obtain their string representations by using
seq:key function.

This example returns text instead of string values because $seq:key is set to true.

declare %seq:collection("text") $%seq:key("true")
function local:col(Suris as xs:string*) as text()* external;

The next example uses the seq:key function to obtain the string representations of the
keys:

for $value in local:col(...)
let Skey := Svalue/seq:key()
return

%seq:split-max(" split-size")

Specifies the maximum split size as either an integer or a string value. The split size
controls how the input file is divided into tasks. Hadoop calculates the split size as
max ($split-min, min($split-max, $block-size)).Optional.

In a string value, you can append K, k, M, m, G, or g to the value to indicate kilobytes,
megabytes, or gigabytes instead of bytes (the default unit). These qualifiers are not case
sensitive. The following examples are equivalent:

%seq:split-max(1024)
%seq:split-max("1024")
%$seq:split-max("1K")

%seq:split-min(" split-size")

Specifies the minimum split size as either an integer or a string value. The split size
controls how the input file is divided into tasks. Hadoop calculates the split size as
max ($split-min, min($split-max, $block-size)).Optional.

In a string value, you can append K, k, M, m, G, or g to the value to indicate kilobytes,
megabytes, or gigabytes instead of bytes (the default unit). These qualifiers are not
case sensitive. The following examples are equivalent:

%seq:split-min(1024)
%seq:split-min("1024")
%seq:split-min("1K")

Oracle XQuery for Hadoop Reference 6-55

Custom Functions for Writing Sequence Files

Custom Functions for Writing Sequence Files

Signature

Annotations

You can use the following annotations to define functions that write collections of
sequence files in HDFS.

Custom functions for writing sequence files must have one of the following signatures.
You can omit the $key argument when you are not writing a key value.

declare %$seq:put("text") [additional annotations]
function local:myFunctionName (Skey as xs:string, $value as xs:string) external;

declare %seq:put([“xml”|"binxm1"]) [additional annotations]
function local:myFunctionName (Skey as xs:string, $xml as node()) external;

%seq:put("method")
Declares the sequence file put function, which writes key-value pairs to a sequence
file. Required.

If you use the $key argument in the signature, then the key is written as
org.apache.hadoop.io.Text. If you omit the $key argument, then the key class is set
to org.apache.hadoop.io.NullWritable.

Set the method parameter to text, xml, or binxml. The method determines the type used
to write the value:

» text: String written as org.apache.hadoop.io.Text
s xml: XML written as org.apache.hadoop.io0.Text

= Dbinxml: XML encoded as XDK binary XML and written as
org.apache.hadoop.io.BytesWritable

%seq:compress("codec", "compressionType")
Specifies the compression format used on the output. The default is no compression.
Optional.

The codec parameter identifies a compression codec. The first registered compression
codec that matches the value is used. The value matches a codec if it equals one of the
following:

1. The fully qualified class name of the codec

2. The unqualified class name of the codec

3. The prefix of the unqualified class name before Codec (case insensitive)
Set the compressionType parameter to one of these values:

= Dblock: Keys and values are collected in groups and compressed together. Block
compression is generally more compact, because the compression algorithm can
take advantage of similarities among different values.

= record: Only the values in the sequence file are compressed.

All of these examples use the default codec and block compression:

%$seq:compress ("org.apache.hadoop.io.compress.DefaultCodec", "block")
%seq:compress ("DefaultCodec", "block")
%seq:compress ("default", "block")

6-56 Oracle Big Data Connectors User's Guide

Sequence File Adapter

%seq:file("name")
Specifies the output file name prefix. The default prefix is part.

%output: parameter
A standard XQuery serialization parameter for the output method (text or XML)
specified in $seq:put. See "Serialization Annotations" on page 6-87.

See Also:
The Hadoop Wiki SequenceFile topic at
http://wiki.apache.org/hadoop/SequenceFile

"The Influence of Serialization Parameters" sections for XML and text
output methods in XSLT and XQuery Serialization 3.0 at

http://www.w3.org/TR/xslt-xquery-serialization-30/

Examples of Sequence File Adapter Functions

The following query extracts comment elements from XML files and stores them in
compressed sequence files. Before storing each comment, it deletes the id attribute and
uses the value as the key in the sequence files.

import module "oxh:xmlf";

declare

%¥seq:put ("xml")

%¥seq:compress ("default", "block")

%seq:file("comments")
function local:myPut ($key as xs:string, $value as node()) external;
for $comment in xmlf:collection("mydata/comments*.xml", "comment")

let $id := $Scomment/@id
let S$newComment :=

copy $c := $Scomment
modify delete node $c/@id
return S$c

return

local :myPut ($id, $newComment)
The next query reads the sequence files that the previous query created in an output
directory named myoutput. The query automatically decompresses the sequence files.

import module "oxh:text";
import module "oxh:seq";

for $comment in seq:collection-xml ("myoutput/comments*")/comment
let $id := Scomment/seq:key ()
where $id eg "12345"
return
text:put-xml (Scomment)

The previous query creates a text file that contains the following line:

<comment i1d="12345" user="john" text="It is raining :("/>

Oracle XQuery for Hadoop Reference 6-57

Text File Adapter

Text File Adapter

The text file adapter provides functions to read and write text files stored in HDFS. It
is described in the following topics:

s Built-in Functions for Reading and Writing Text Files
s Custom Functions for Reading Text Files
» Custom Functions for Writing Text Files

= Examples of Text File Functions

6-58 Oracle Big Data Connectors User's Guide

Text File Adapter

Built-in Functions for Reading and Writing Text Files

text:collection

Signature

Parameters

Returns

To use the built-in functions in your query, you must import the text file module as
follows:

import module "oxh:text";

The text file module contains the following functions:
= text:collection

= text:collection-xml

s text:put

s text:put-xml

m text:trace

For examples, see "Examples of Text File Adapter Functions" on page 6-61.

Accesses a collection of text files in HDFS. The files might be split up and processed in
parallel by multiple tasks.

declare %text:collection("text") function
text:collection(Suris as xs:string*) as xs:string* external;

$uris
The text file URIs

One string value for each line in each file

text:collection-xml

Signature

Parameters

Accesses a collection of text files in HDFS. The files might be split up and processed in
parallel by multiple tasks. Each line in each file is parsed as an XML document and
returned by the function. Therefore, each line must fully contain a single XML
document, and any new lines in the XML must be escaped with XML character
references.

declare %text:collection("xml") function
text:collection-xml (Suris as xs:string*) as document-node()* external;

$uris
The text file URIs

Oracle XQuery for Hadoop Reference 6-59

Built-in Functions for Reading and Writing Text Files

Returns

text:put

Signature

Parameters

Returns

Notes

text:put-xmi

Signature

Parameters

Returns

Notes

One XML document for each line in each file

Writes a line to a text file in the output directory of the query. The lines are spread
across one or more files.

declare %text:put("text") function
text:put (Svalue as xs:string) external;

$value
The text to write

empty-sequence ()

The number of files created depends on how the query is distributed among tasks.
Each file has a name that starts with "part” (such as part-m-00000). You specify the
output directory when the query executes. See "Running a Query" on page 5-13.

Writes XML to a line in a text file. The lines are spread across one or more files in the
output directory of the query.

Newline characters in the serialized XML are replaced with character references to
ensure the XML does not span multiple lines. For example,
 replaces the linefeed
character (\n).

declare %text:put("xml") function
text:put-xml (Svalue as node()) external;

$value
The XML to write

empty-sequence ()

The number of files created depends on how the query is distributed among tasks.
Each file has a name that starts with "part" (such as part-m-00000). You specify the
output directory when the query executes. See "Running a Query" on page 5-13.

6-60 Oracle Big Data Connectors User's Guide

Text File Adapter

text:trace

Signature

Parameters

Returns

Writes a line to a text file named trace-* in the output directory of the query. The lines
are spread across one or more files.

This function provides you with a quick way to write to an alternate output. For
example, you might create a trace file to identify invalid rows within a query, while
loading the data into an Oracle database table.

declare %text:put("text") %text:file("trace") function
text:trace(Svalue as xs:string) external;

$value
The text to write

empty-sequence ()

Examples of Text File Adapter Functions

This example uses following text files in HDFS. The files contain a log of visits to
different web pages. Each line represents a visit to a web page and contains the time,
user name, and page visited.

mydata/visitsl.log

2013-10-28T06:00:00, john, index.html, 200
2013-10-28T08:30:02, kelly, index.html, 200
2013-10-28T08:32:50, kelly, about.html, 200
2013-10-30T10:00:10, mike, index.html, 401

mydata/visits2.log

2013-10-30T10:00:01, john, index.html, 200
2013-10-30T10:05:20, john, about.html, 200
2013-11-01T08:00:08, laura, index.html, 200
2013-11-04T06:12:51, kelly, index.html, 200
2013-11-04T06:12:40, kelly, contact.html, 200

The following query filters out the pages visited by john and writes only the date and
page visited to a new text file:

import module "oxh:text";

for $line in text:collection("mydata/visits*.log")
let $split := fn:tokenize($line, "\s*,\s*")
where $split[2] eqg "john"
return
text:put ($split(l] || " " || $split[3])

The query creates a text file that contains the following lines:

2013-10-28T06:00:00 index.html
2013-10-30T10:00:01 index.html
2013-10-30T10:05:20 about.html

Oracle XQuery for Hadoop Reference 6-61

Built-in Functions for Reading and Writing Text Files

The next query computes the number of page visits per day:

import module "oxh:text";

for $line in text:collection("mydata/visits*.log")
let $split := fn:tokenize($line, "\s*,\s*")
let $time := xs:dateTime(S$split([1])
let $day := xs:date(Stime)
group by S$day
return
text:put($day || " => " || count($line))

The query creates text files that contain the following lines:

2013-10-28 =>
2013-10-30 =>
2013-11-01 =>
2013-11-04 =>

N = W W

6-62 Oracle Big Data Connectors User's Guide

Text File Adapter

Custom Functions for Reading Text Files

Signature

Annotations

You can use the following annotations to define functions that read collections of text
files in HDFS. These annotations provide additional functionality that is not available
using the built-in functions.

Custom functions for reading text files must have one of the following signatures:

declare %$text:collection("text") [additional annotations]
function local:myFunctionName(Suris as xs:string*) as xs:string* external;

declare %text:collection("xml") [additional annotations]
function local:myFunctionName($uris as xs:string*) as document-node()*
external;

%text:collection([" method"])
Declares the text collection function. Required.

The optional method parameter can be one of the following values:
s text: Each line in the text file is returned as xs: string. Default.

= xml: Each line in the text file is parsed as XML and returned as document-node.
Each XML document must be fully contained on a single line. Newline characters
inside the document must be represented by a numeric character reference.

%xmlf:split-max(" split-size")

Specifies the maximum split size as either an integer or a string value. The split size
controls how the input file is divided into tasks. Hadoop calculates the split size as
max ($split-min, min($split-max, $block—size)).()pﬁonaL

In a string value, you can append X, k, 14, m, G, or g to the value to indicate kilobytes,
megabytes, or gigabytes instead of bytes (the default unit). These qualifiers are not case
sensitive. The following examples are equivalent:

gxmlf:split-max(1024)
$xmlf:split-max("1024")
$xmlf:split-max("1K")

%xmlf:split-min(" split-size")

Specifies the minimum split size as either an integer or a string value. The split size
controls how the input file is divided into tasks. Hadoop calculates the split size as
max ($split-min, min($split-max, Sblock-size)). Optional.

In a string value, you can append K, k, M, m, G, or g to the value to indicate kilobytes,
megabytes, or gigabytes instead of bytes (the default unit). These qualifiers are not
case sensitive. The following examples are equivalent:

$xmlf:split-min(1024)
%seq:split-min("1024")
gxmlf:split-min("1K")

Oracle XQuery for Hadoop Reference 6-63

Custom Functions for Reading Text Files

Parameters

$uris as xs:string*
Lists the HDEFS file URIs. Required.

Return Type

xs:string* for the text method if $seq:key=false or is not set

text () * if $seq:key=true or is set

6-64 Oracle Big Data Connectors User's Guide

Text File Adapter

Custom Functions for Writing Text Files

Signature

Annotations

You can use the following annotations to define functions that write text files in HDFS.

Custom functions for writing text files must have one of the following signatures:

declare %$text:put("text") [additional annotations] function
text:myFunctionName ($value as xs:string) external;

declare %text:put("xml") [additional annotations] function
text :myFunctionName ($value as node()) external;

%text:put([" method"])
Declares the text put function. Required.

The optional method parameter can be one of the following values:
» text: Writes data to a text file. Default.

s xml: Writes data to an XML file. The XML is serialized and newline characters are
replaced with character references. This assures that the resulting XML document
is one text line with no line breaks.

%text:compress("codec")
Specifies the compression format used on the output. The default is no compression.
Optional.

The codec parameter identifies a compression codec. The first registered compression
codec that matches the value is used. The value matches a codec if it equals one of the
following:

1. The fully qualified class name of the codec

2. The unqualified class name of the codec

3. The prefix of the unqualified class name before "Codec" (case insensitive)
All of these examples use the default codec and block compression:

$text:compress ("org.apache.hadoop.io.compress.DefaultCodec", "block")
%text:compress ("DefaultCodec", "block")
%text:compress ("default", "block")

%text:file(" name")
Specifies the output file name prefix. The default prefix is part.

%output: parameter
A standard XQuery serialization parameter for the output method (text or XML)
specified in $text :put. See "Serialization Annotations" on page 6-87.

UTEF-8 is currently the only supported character encoding.

Oracle XQuery for Hadoop Reference 6-65

Custom Functions for Writing Text Files

Examples of Text File Functions

Example 1 Querying Simple Delimited Formats

This example uses the fn:tokenize function to parse the lines of a text file. This
technique works well for simple delimited formats.

The following query declares custom put and collection functions. It computes the
number of hits and the number of unique users for each page in the logs.

import module "oxh:text";

declare
%text:collection("text")
%text:split-max("32m")
function local:col ($Suris as xs:string*) as xs:string* external;

declare
Stext:put ("xml")
%text:compress("gzip")
%text:file("pages")

function local:out($arg as node()) external;

for $line in local:col ("mydata/visits*.log")
let $split := fn:tokenize($line, "\s*,\s*")
let Suser := S$split[2]
let S$page := S$split[3]
group by $page
return
local:out (
<page>
<name>{ $page}</name>
<hits>{count($line) }</hits>
<users>{fn:count (fn:distinct-values (Suser)) }</users>
</page>
)

The output directory of the previous query is named myoutput. The following lines
are written to myoutput/pages-r-*.gz.

<page><name>about.html</name><hits>2</hits><users>2</users></page>
<page><name>contact.html</name><hits>l</hits><users>1</users></page>
<page><name>index.html</name><hits>6</hits><users>4</users></page>

The files are compressed with the gzip codec. The following query reads the output
files, and writes the page name and total hits as plain text. The collection function
automatically decodes the compressed files.

import module "oxh:text";
for $page in text:collection-xml ("myoutput/page*.gz")/page
return
text:put ($page/name || "," || $page/hits)
This query creates text files that contains the following lines:

about.html, 2
contact.html, 1
index.html, 6

6-66 Oracle Big Data Connectors User's Guide

Text File Adapter

Example 2 Querying Complex Text Formats

The fn:tokenize function might not be adequate for complex formats that contain
variety of data types and delimiters. This example uses the fn:analyze-string
function to process a log file in the Apache Common Log format.

A text file named mydata/access.log in HDFS contains the following lines:

192.0.2.0 - - [30/Sep/2013:16:39:38 +0000] "GET /inddex.html HTTP/1.1" 404 284

192.0.2.0 - - [30/Sep/2013:16:40:54 +0000] "GET /index.html HTTP/1.1" 200 12390
192.0.2.4 - - [01/0ct/2013:12:10:54 +0000] "GET /index.html HTTP/1.1" 200 12390
192.0.2.4 - - [01/0ct/2013:12:12:12 +0000] "GET /about.html HTTP/1.1" 200 4567

192.0.2.1 - - [02/0ct/2013:08:39:38 +0000] "GET /indexx.html HTTP/1.1" 404 284

192.0.2.1 - - [02/0ct/2013:08:40:54 +0000] "GET /index.html HTTP/1.1" 200 12390
192.0.2.1 - - [02/0ct/2013:08:42:38 +0000] "GET /aobut.html HTTP/1.1" 404 283

The following query computes the requests made after September 2013 when the
server returned a status code 404 (Not Found) error. It uses a regular expression and
fn:analyze-string to match the components of the log entries. The time format
cannot be cast directly to xs:dateTime, as shown in Example 1. Instead, the
ora-fn:dateTime-from-string-with-format function converts the string to an
instance of xs:dateTime.

import module "oxh:text";

declare variable SREGEX :=
PNSH) (\S+) (\S+) NLCIANTTH)NT " ([~"T+)" (\S+) (\S+)';

for $line in text:collection("mydata/access.log")
let S$match := fn:analyze-string(S$line, S$REGEX)/fn:match
let $Stime :=
ora-fn:dateTime-from-string-with-format (
"dd/MMM/yyyy:HH:mm:ss Z",
Smatch/fn:group[4]
)
let $status := S$match/fn:group([6]
where
Sstatus eq "404" and
Stime ge xs:dateTime("2013-10-01T00:00:00")
let S$host := Smatch/fn:group[1]
let $request := S$match/fn:group([5]
return
text:put($host || "," || $request)

The query creates text files that contain the following lines:

192.0.2.1,GET /indexx.html HTTP/1.1
192.0.2.1,GET /aobut.html HTTP/1.1

See Also:

n The W3C XPath and XQuery Functions and Operators 3.0
specification for information about the fn: tokenize and
fn:analyze-string functions:

http://www.w3.org/TR/xpath-functions-30/#func-tokenize

http://www.w3.org/TR/xpath-functions-30/#func-analyze-str
ing

» For information about the Apache Common log format:

http://httpd.apache.org/docs/current/logs.html

Oracle XQuery for Hadoop Reference 6-67

http://www.w3.org/TR/xpath-functions-30/#func-analyze-string
http://www.w3.org/TR/xpath-functions-30/#func-analyze-string

XML File Adapter

XML File Adapter

The XML file adapter provides access to XML files stored in HDFS. The adapter
optionally splits individual XML files so that a single file can be processed in parallel
by multiple tasks.

This adapter is described in the following topics:
s Built-in Functions for Reading XML Files
s Custom Functions for Reading XML Files

6-68 Oracle Big Data Connectors User's Guide

XML File Adapter

Built-in Functions for Reading XML Files

To use the built-in functions in your query, you must import the XML file module as
follows:

import module "oxh:xmlf";

The XML file module contains the following functions:
= xmlf:collection

See "Examples of XML File Adapter Functions" on page 6-70.

xmlf:collection

Accesses a collection of XML documents in HDFS. Multiple files can be processed
concurrently, but each individual file is parsed by a single task.

Note: HDFS does not perform well when data is stored in many
small files. For large data sets with many small XML documents, use
Hadoop sequence files and the Sequence File Adapter.

Signature
declare %$xmlf:collection function
xmlf:collection(Suris as xs:string*) as document-node()* external;
Parameters
$uris
The XML file URIs
Returns

One XML document for each file

xmlf:collection

Accesses a collection of XML documents in HDFS. The files might be split and
processed by multiple tasks simultaneously. The function returns only elements that
match a specified name. This enables very large XML files to be processed efficiently.

This function only supports XML files that meet certain requirements. See
"Restrictions on Splitting XML Files" on page 6-73.

Signature
declare %$xmlf:collection function
xmlf:collection($uris as xs:string*, Snames as xs:anyAtomicType+) as element()*
external;
Parameters
$uris
The XML file URIs

Oracle XQuery for Hadoop Reference 6-69

Built-in Functions for Reading XML Files

Returns

$names

The names of the elements to be returned by the function. The names can be either
strings or QNames. For QNames, the XML parser uses the namespace binding implied
by the QName prefix and namespace.

Each element that matches one of the names specified by the $names argument

Examples of XML File Adapter Functions

This example queries three XML files in HDFS with the following contents. Each XML
file contains comments made by users on a specific day. Each comment can have zero
or more "likes" from other users.

mydata/commentsl.xml

<comments date="2013-12-30">
<comment i1d="12345" user="john" text="It is raining :("/>
<comment 1d="56789" user="kelly" text="I won the lottery!">
<like user="john"/>
<like user="mike"/>
</comment>
</comments>

mydata/comments2.xml

<comments date="2013-12-31">
<comment 1d="54321" user="mike" text="Happy New Year!">
<like user="laura"/>
</comment>
</comments>

mydata/comments3.xml

<comments date="2014-01-01">
<comment 1d="87654" user="mike" text="I don't feel so good."/>
<comment 1d="23456" user="john" text="What a beautiful day!">
<like user="kelly"/>
<like user="phil"/>
</comment>
</comments>

This query writes the number of comments made each year to a text file. No element
names are passed to xmlf:collection, and so it returns three documents, one for each
file. Each file is processed serially by a single task.

import module "oxh:xmlf";
import module "oxh:text";

for $comments in xmlf:collection("mydata/comments*.xml")/comments
let $date := xs:date($Scomments/@date)
group by Syear := fn:year-from-date(Sdate)
return
text:put($year || ", " || fn:count ($comments/comment))

The query creates text files that contain the following lines:

2013, 3
2014, 2

6-70 Oracle Big Data Connectors User's Guide

XML File Adapter

The next example writes the number of comments and the average number of likes for
each user. Each input file is split, so that it can be processed in parallel by multiple
tasks. The xmlf:collection function returns five elements, one for each comment.

import module "oxh:xmlf";
import module "oxh:text";

for $comment in xmlf:collection("mydata/comments*.xml", "comment")
let $likeCt := fn:count ($comment/like)
group by Suser := $Scomment/@user
return
text:put($user || ", " || fn:count($comment) || ", " || fn:avg($likeCt))

This query creates text files that contain the following lines:

john, 2, 1
kelly, 1, 2
mike, 2, 0.5

Oracle XQuery for Hadoop Reference 6-71

Custom Functions for Reading XML Files

Custom Functions for Reading XML Files

Signature

Annotations

You can use the following annotations to define functions that read collections of XML
files in HDFS. These annotations provide additional functionality that is not available
using the built-in functions.

Custom functions for reading XML files must have one of the following signatures:

declare %$xmlf:collection [additional annotations]
function local:myFunctionName (Suris as xs:string*) as node()* external;

declare %$xmlf:collection [additional annotations]
function local:myFunctionName ($uris as xs:string*, S$names as xs:anyAtomicType+)
as element ()* external;

%xmilf:collection
Declares the collection function. This annotation does not accept parameters. Required.

%xmlf:split(" element-name1"[,... "element-nameN")
Specifies the element names used for parallel XML parsing. This annotation can be
used instead of the $names argument.

When this annotation is specified, only the single argument version of the function is
allowed. This enables the element names to be specified statically, so they do not need
to be specified when the function is called.

%output:encoding(" charset")
Identifies the text encoding of the input documents.

When this encoding is used with the $xm1f:split annotation or the $names argument,
only ISO-8859-1, US-ASCII, and UTEF-8 are valid encodings. Otherwise, the valid
encodings are those supported by the JDK. UTF-8 is assumed when this annotation is
omitted.

See Also: "Supported Encodings" in the Oracle Java SE
documentation at

http://docs.oracle.com/javase/7/docs/technotes/guides/intl/e
ncoding.doc.html

%xmilf:split-namespace(" prefix", "namespace")
This annotation provides extra namespace declarations to the parser. You can specify it
multiple times to declare one or more namespaces.

Use this annotation to declare the namespaces of ancestor elements. When XML is
processed in parallel, only elements that match the specified names are processed by
an XML parser. If a matching element depends on the namespace declaration of one of
its ancestor elements, then the declaration is not visible to the parser and an error may
occur.

These namespace declarations can also be used in element names when specifying the
split names. For example:

declare
$xmlf:collection

6-72 Oracle Big Data Connectors User's Guide

http://docs.oracle.com/javase/7/docs/technotes/guides/intl/encoding.doc.html
http://docs.oracle.com/javase/7/docs/technotes/guides/intl/encoding.doc.html

XML File Adapter

Notes

$xmlf:split("eg:foo")
$xmlf:split-namespace("eg", "http://example.org")
function local:myFunction(Suris as xs:string*) as document-node() external;

%xmilf:split-entity(" entity-name", " entity-value")

Provides entity definitions to the XML parser. When XML is processed in parallel, only
elements that match the specified split names are processed by an XML parser. The
DTD of an input document that is split and processed in parallel is not processed.

In this example, the XML parser expands &foo; entity references as "Hello World":

$xmlf:split-entity("foo", "Hello World")

%xmlf:split-max(" split-size")

Specifies the maximum split size as either an integer or a string value. The split size
controls how the input file is divided into tasks. Hadoop calculates the split size as
max ($split-min, min($split-max, Sblock-size)). Optional.

In a string value, you can append K, k, M, m, G, or g to the value to indicate kilobytes,
megabytes, or gigabytes instead of bytes (the default unit). These qualifiers are not case
sensitive. The following examples are equivalent:

$xmlf:split-max(1024)
gxmlf:split-max("1024")
$xmlf:split-max("1K")

%seq:split-min(" split-size")

Specifies the minimum split size as either an integer or a string value. The split size
controls how the input file is divided into tasks. Hadoop calculates the split size as
max ($split-min, min($split-max, Sblock-size)). Optional.

In a string value, you can append K, k, M, m, G, or g to the value to indicate kilobytes,
megabytes, or gigabytes instead of bytes (the default unit). These qualifiers are not
case sensitive. The following examples are equivalent:

$xmlf:split-min(1024)
$xmlf:split-min("1024")
gxmlf:split-min("1K")

Restrictions on Splitting XML Files

Individual XML documents can be processed in parallel when the element names are
specified using either the $names argument or the $xml1f:split annotation.

The input documents must meet the following constraints in order to be processed in
parallel:

s XML cannot contain a comment, CDATA section, or processing instruction that
contains text that matches one of the specified element names (that is, a < character
followed by a name that expands to a QName). Otherwise, such content might be
parsed incorrectly as an element.

= An element in the file that matches a specified element name cannot contain a
descendant element that also matches a specified name. Otherwise, multiple
processors might pick up the matching descendant and cause the function to
produce incorrect results.

= An element that matches one of the specified element names (and all of its
descendants) must not depend on the namespace declarations of any of its

Oracle XQuery for Hadoop Reference 6-73

Custom Functions for Reading XML Files

Example

ancestors. Because the ancestors of a matching element are not parsed, the
namespace declarations in these elements are not processed.

You can work around this limitation by manually specifying the namespace
declarations with the $xmlf:split-namespace annotation.

Oracle recommends that the specified element names do not match elements in the file
that are bigger than the split size. If they do, then the adapter functions correctly but
not efficiently.

Processing XML in parallel is difficult, because parsing cannot begin in the middle of
an XML file. XML constructs like CDATA sections, comments, and namespace
declarations impose this limitation. A parser starting in the middle of an XML
document cannot assume that, for example, the string <foo> is a begin element tag,
without searching backwards to the beginning of the document to ensure that it is not
in a CDATA section or a comment. However, large XML documents typically contain
sequences of similarly structured elements and thus are amenable to parallel
processing. If you specify the element names, then each task works by scanning a
portion of the document for elements that match one of the specified names. Only
elements that match a specified name are given to a true XML parser. Thus, the
parallel processor does not perform a true parse of the entire document.

Example 1 Querying XML Files
The following example declares a custom function to access XML files:

import module "oxh:text";

declare
%xmlf:collection
$xmlf:split("comment")
$xmlf:split-max("32M")
function local:comments (Suris as xs:string*) as element()* external;

for $c in local:comments ("mydata/comment*.xml")
where $c/Quser eqg "mike"
return text:put($c/@id)

The query creates a text file that contains the following lines:

54321
87654

6-74 Oracle Big Data Connectors User's Guide

JSON Module

JSON Module

This module contains functions for working with JSON data. You can use it to process
JSON that is embedded in other file formats. For example, you can query JSON that is
stored as lines in a large text file by using json:parse-as-xml with the
text:collection function.

Processing large JSON files in parallel is not currently supported.

Oracle XQuery for Hadoop Reference 6-75

Built-in Functions for Reading JSON

Built-in Functions for Reading JSON

To use the built-in functions in your query, you must import the JSON module as
follows:

import module "oxh:json";
The JSON module contains the following functions:
= json:parse-as-xml

= json:get

json:parse-as-xml

Signature

Parameters

Returns

Notes

Parses a JSON value as XML.

json:parse-as-xml (Sarg as xs:string?) as element (*)?

$arg

Can be the empty sequence.

An XML element that models the JSON value. An empty sequence if $arg is an empty
sequence.

About Converting JSON Objects to XML

JSON objects are similar to Avro maps and are converted to the same XML structure.
See "Reading Maps" on page 6-11.

For example, the following JSON object is converted to an XML element:

{

"user" : "john",
"full name" : "John Doe",
"age" : 45

}

The object is modeled as the following element:

<oxh:item>
<oxh:entry key="user">john</oxh:entry>
<oxh:entry key="full_name">John Doe</oxh:entry>
<oxh:entry key="age">45</oxh:entry>

</oxh:item>

About Converting JSON Arrays to XML

JSON arrays are similar to Avro arrays and are converted to the same XML structure.
See "Reading Arrays" on page 6-12.

For example, the following JSON array is converted to an XML element:

6-76 Oracle Big Data Connectors User's Guide

JSON Module

["red", "blue", "green"]

The array is modeled as the following element:

<oxh:item>
<oxh:item>red</oxh:item>
<oxh:item>blue</oxh:item>
<oxh:item>green</oxh:item>
</oxh:item>

About Converting Other JSON Types
The other JSON values are mapped as follows:

Table 6-4 JSON Type Conversions

JSON XML

null An empty (nilled) element
true/false xs:boolean

number xs:decimal

string Xs:string

json:get
Retrieves an entry from a JSON object modeled as XML.
Signature
json:get (Skey as xs:string?, S$obj as node()?) as element (oxh:entry)?
Or
json:get (Skey as xs:string?) as element (oxh:entry)?
Parameters
$Skey
The JSON data key.
$obj
The JSON object value.
Returns
The value of the following XPath expression:
Sobj/oxh:entry[@key eq Skey]
If sinput not present, the behavior is identical to calling the two-argument function
using the context item for $obj. See the Notes.
Notes

The following are equivalent:

$var/json:get ("key")

json:get ("key", $var)

Oracle XQuery for Hadoop Reference 6-77

Built-in Functions for Reading JSON

Svar/oxh:entry[@key eq "key"]
$var is a JSON object modeled as XML. See "Reading Maps" on page 6-11.

Examples of JSON Functions
These examples query the following text file in HDFS.

mydata/users-json.txt

{ "user" : "john", "full name" : "John Doe", "age" : 45 }

{ "user" : "kelly", "full name" : "Kelly Johnson", "age" : 32 }
{ "user" : "laura", "full name" : "Laura Smith", "age" : null }
{ "user" : "phil", "full name" : "Phil Johnson", "age" : 27 }
Example 1

The following query selects the names of users that are older than 30:

import module "oxh:text";
import module "oxh:json";

for $line in text:collection("mydata/users-json.txt")

let Suser := json:parse-as-xml($line)
where Suser/json:get("age") gt 30
return

text:put-text (Suser/json:get ("full name"))

This query generates text files that contain the following lines:

John Doe
Kelly Johnson

Example 2
The next query selects the names of employees that have a null age value:

import module "oxh:text";
import module "oxh:json";

for $line in text:collection("mydata/users-json.txt")

let Suser := json:parse-as-xml($line)
where Suser/json:get("age")/nilled()
return

text:put-text (Suser/json:get ("full name"))

This query generates a text file that contains the following line:

Laura Smith

6-78 Oracle Big Data Connectors User's Guide

Utility Module

Utility Module

The utility module contains ora-£fn functions for handling strings and dates. These
functions are defined in XDK XQuery, whereas the oxh functions are specific to Oracle
XQuery for Hadoop.

The utility functions are described in the following topics:
s Duration, Date, and Time Functions

s String Functions

Oracle XQuery for Hadoop Reference 6-79

Duration, Date, and Time Functions

Duration, Date, and Time Functions

These functions are in the http://xmlns.oracle.com/xdk/xquery/function
namespace. The ora-fn prefix is predeclared and the module is automatically
imported.

ora-fn:date-from-string-with-format($format as xs:string?, $dateString as xs:string?)
as xs:date?
Returns a new date value from a string according to the specified pattern.

$format is the pattern. See "Format Argument" on page 6-82.
$dateString is an input string that represents a date.
This example returns the specified date in the current time zone:

ora-fn:date-from-string-with-format ("yyyy-MM-dd G", "2013-06-22 AD")

ora-fn:date-from-string-with-format($format as xs:string?, $dateString as xs:string?,
$locale as xs:string*) as xs:date?
Returns a new date value from a string according to the specified pattern.

$format is the pattern. See "Format Argument” on page 6-82.
$dateString is an input string that represents a date.
$locale is a one- to three-field value that represents the locale. See "Locale Argument"

on page 6-82.

ora-fn:date-to-string-with-format($format as xs:string?, $date as xs:date?) as
xs:string?
Returns a date string with the specified pattern.

$format is the pattern. See "Format Argument" on page 6-82.
$date is the date.
This example returns the string "2013-07-15":

ora-fn:date-to-string-with-format ("yyyy-mm-dd", xs:date("2013-07-15"))

ora-fn:date-to-string-with-format($format as xs:string?, $date as xs:date?, *$locale
as xs:string?) as xs:string?
Returns a date string with the specified pattern.

$format is the pattern. See "Format Argument" on page 6-82.
$date is the date.
$locale is a one- to three-field value that represents the locale. See "Locale Argument"

on page 6-82.

ora-fn:dateTime-from-string-with-format($format as xs:string?, $dateTimeString as
xs:string?) as xs:dateTime?
Returns a new dateTime value from an input string according to the specified pattern.

$format is the pattern. See "Format Argument" on page 6-82.
$dateTimeString is the date and time.
This example returns the specified date and 11:04:00AM in the current time zone:

ora-fn:dateTime-from-string-with-format ("yyyy-MM-dd 'at' hh:mm", "2013-06-22 at
11:04")

6-80 Oracle Big Data Connectors User's Guide

Utility Module

The next example returns the specified date and 12:00:00AM in the current time zone:

ora-fn:dateTime-from-string-with-format ("yyyy-MM-dd G", "2013-06-22 AD")

ora-fn:dateTime-from-string-with-format($format as xs:string?, $dateTimeString as
xs:string?, $locale as xs:string?) as xs:dateTime?
Returns a new dateTime value from an input string according to the specified pattern.

$format is the pattern. See "Format Argument" on page 6-82.
$dateTimeString is the date and time.
$locale is a one- to three-field value that represents the locale. See "Locale Argument"

on page 6-82.

ora-fn:dateTime-to-string-with-format($format as xs:string?, $dateTime as
xs:dateTime?) as xs:string?
Returns a date and time string with the specified pattern.

$format is the pattern. See "Format Argument" on page 6-82.
$dateTime is the date and time.
This example returns the string "07 JAN 2013 10:09 PM AD":

ora-fn:dateTime-to-string-with-format ("dd MMM yyyy hh:mm a G",
xs:dateTime ("2013-01-07T22:09:44"))

The next example returns the string "01-07-2013":

ora-fn:dateTime-to-string-with-format ("MM-dd-yyyy",
xs:dateTime ("2013-01-07T22:09:44"))

ora-fn:dateTime-to-string-with-format($format as xs:string?, $dateTime as
xs:dateTime?, $locale as xs:string?) as xs:string?
Returns a date and time string with the specified pattern.

$format is the pattern. See "Format Argument" on page 6-82.
$dateTime is the date and time.
$locale is a one- to three-field value that represents the locale. See "Locale Argument"

on page 6-82.

ora-fn:time-from-string-with-format($format as xs:string?, $timeString as xs:string?)
as xs:time?
Returns a new time value from an input string according to the specified pattern.

$format is the pattern. See "Format Argument” on page 6-82.
$timeString is the time.
This example returns 9:45:22PM in the current time zone:

ora-fn:time-from-string-with-format ("HH.mm.ss", "21.45.22")

The next example returns 8:07:22PM in the current time zone:

fn-bea:time-from-string-with-format ("hh:mm:ss a", "8:07:22 PM")

ora-fn:time-from-string-with-format($format as xs:string?, $timeString as xs:string?,
$locale as xs:string?) as xs:time?
Returns a new time value from an input string according to the specified pattern.

$format is the pattern. See "Format Argument" on page 6-82.

Oracle XQuery for Hadoop Reference 6-81

Duration, Date, and Time Functions

$timeString is the time.
$locale is a one- to three-field value that represents the locale. See "Locale Argument"
on page 6-82.

ora-fn:time-to-string-with-format($format as xs:string?, $time as xs:time?) as
xs:string?
Returns a time string with the specified pattern.

$format is the pattern. See "Format Argument” on page 6-82.
$time is the time.
This example returns the string "10:09 PM":

ora-fn:time-to-string-with-format ("hh:mm a", xs:time("22:09:44"))

The next example returns the string "22:09 PM":
ora-fn:time-to-string-with-format ("HH:mm a", xs:time("22:09:44"))
ora-fn:time-to-string-with-format($format as xs:string?, $time as xs:time?, $locale as

xs:string?) as xs:string?
Returns a time string with the specified pattern.

$format is the pattern. See "Format Argument” on page 6-82.
$time is the time.

$locale is a one- to three-field value that represents the locale. See "Locale Argument"
on page 6-82.

Format Argument
The $format argument identifies the various fields that compose a date or time value.

See Also: The SimpleDateFormat class in the Java Standard Edition 7
Reference at

http://docs.oracle.com/javase/7/docs/api/java/text/SimpleDat
eFormat.html

Locale Argument

The $1locale represents a specific geographic, political, or cultural region defined by
up to three fields:

1. Language code: The ISO 639 alpha-2 or alpha-3 language code, or the registered
language subtags of up to eight letters. For example, en for English and ja for
Japanese.

2. Country code: The ISO 3166 alpha-2 country code or the UN M.49 numeric-3 area
code. For example, US for the United States and 029 for the Caribbean.

3. Variant: Indicates a variation of the locale, such as a particular dialect. Order
multiple values in order of importance and separate them with an underscore (_).
These values are case sensitive.

6-82 Oracle Big Data Connectors User's Guide

http://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html
http://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html

Utility Module

See Also:
» The locale class in the Java Standard Edition 7 Reference at

http://docs.oracle.com/javase/7/docs/api/java/util/Locale
.html

= Alllanguage, country, and variant codes in the Internet Assigned
Numbers Authority (IANA) Language Subtag Registry at

http://www.lana.org/assignments/language-subtag-registry/
language-subtag-registry

Oracle XQuery for Hadoop Reference 6-83

http://www.iana.org/assignments/language-subtag-registry/language-subtag-registry
http://www.iana.org/assignments/language-subtag-registry/language-subtag-registry
http://docs.oracle.com/javase/7/docs/api/java/util/Locale.html
http://docs.oracle.com/javase/7/docs/api/java/util/Locale.html

String Functions

String Functions

These functions are in the http://xmlns.oracle.com/xdk/xquery/function
namespace. The ora-fn prefix is predeclared and the module is automatically
imported.

ora-fn:pad-left($str as xs:string?, $size as xs:integer?) as xs:string?

Adds spaces (ASCII 32) to the left of a string to create a fixed-length string. If the input
string exceeds the specified size, then it is truncated to return a substring of the
specified length.

$str is the input string.

$size is the desired fixed length, which is obtained by adding padding characters to
$str.

If either argument is an empty sequence, then the function returns an empty sequence.

This example prefixes spaces to the string up to the specified maximum of six
characters. The returned string has two spaces: " abcd"™

ora-fn:pad-left("abcd", 6)

The next example returns only "ab" because the input string exceeds the specified fixed
length:

ora-fn:pad-left("abcd", 2)

ora-fn:pad-left($str as xs:string?, $size as xs:integer?, $pad as xs:string?) as
xs:string?

Adds padding characters to the left of a string to create a fixed-length string. If the

input string exceeds the specified size, then it is truncated to return a substring of the
specified length.

$str is the input string.

$size is the desired fixed length, which is obtained by adding padding characters to
$str.

$pad is the padding character

This example prefixes "01" to the input string up to the maximum of six characters.
The returned string is "010abc". The function returns one complete and one partial pad
character.

ora-fn:pad-left("abc", 6, "01")

The next example returns only "ab" because the input string exceeds the specified fixed
length:

ora-fn:pad-left("abcd", 2, "01")

ora-fn:pad-right($str as xs:string?, $size as xs:integer?) as xs:string?

Adds spaces (ASCII 32) to the right of a string to create a fixed-length string. If the

input string exceeds the specified size, then it is truncated to return a substring of the
specified length.

$str is the input string.

$size is the desired fixed length, which is obtained by adding padding characters to
$str.

If either argument is an empty sequence, then the function returns an empty sequence.

6-84 Oracle Big Data Connectors User's Guide

Utility Module

This example appends spaces to the string up to the specified maximum of six
characters. The returned string has two spaces: "abcd "

ora-fn:pad-right ("abcd", 6)

The next example returns only "ab" because the input string exceeds the specified fixed
length:

ora-fn:pad-right ("abcd", 2)

ora-fn:pad-right($str as xs:string?, $size as xs:integer?, $pad as xs:string?) as
xs:string?

Adds padding characters to the right of a string to create a fixed-length string. If the

input string exceeds the specified size, then it is truncated to return a substring of the
specified length.

$str is the input string.

$size is the desired fixed length, which is obtained by adding padding characters to
$str.

$pad is the padding character.

This example appends "01" to the input string up to the maximum of six characters.
The returned string is "abc010". The function returns one complete and one partial pad
character.

ora-fn:pad-right("abc", 6, "01")

The next example returns only "ab" because the input string exceeds the specified fixed
length:

ora-fn:pad-right ("abcd", 2, "01")

ora-fn:trim($input as xs:string?) as xs:string?

Removes any leading or trailing white space from a string.

$input is the string to trim. If $input is an empty sequence, then the function returns
an empty sequence. Other data types trigger an error.

This example returns the string "abc™:
ora-fn:trim(" abc ")

ora-fn:trim-left($input as xs:string?) as xs:string?
Removes any leading white space.

$input is the string to trim. If $input is an empty sequence, then the function returns
an empty sequence. Other data types trigger an error.

This example removes the leading spaces and returns the string "abc "
ora-fn:trim-left (" abc ")

ora-fn:trim-right($input as xs:string?) as xs:string?)

Removes any trailing white space.

$input is the string to trim. If $input is an empty sequence, then the function returns
an empty sequence. Other data types trigger an error.

"

This example removes the trailing spaces and returns the string " abc™:

ora-fn:trim-left (" abc ")

Oracle XQuery for Hadoop Reference 6-85

Hadoop Module

Hadoop Module

These functions are in the http://xmlns.oracle.com/hadoop/xquery namespace. The
oxh prefix is predeclared and the module is automatically imported.

oxh:find($pattern as xs:string?) as xs:string*
Returns a sequence of file paths that match a pattern.

See Also: For the file pattern, the globStatus method in the Apache
Hadoop Main 2.2.0 API at

http://hadoop.apache.org/docs/current/api/org/apache/hadoop/
fs/FileSystem.html#globStatus

oxh:increment-counter($groupName as xs:string, $counterName as xs:string
Increments a user-defined MapReduce job counter by one.

oxh:increment-counter($groupName as xs:string, $counterName as xs:string, $value
as xs:integer
Increments the MapReduce job counter by the given value.

oxh:property($name as xs:string?) as xs:string?
Returns the value of a Hadoop configuration property.

$name is the configuration property.

6-86 Oracle Big Data Connectors User's Guide

http://hadoop.apache.org/docs/current/api/org/apache/hadoop/fs/FileSystem.html#globStatus
http://hadoop.apache.org/docs/current/api/org/apache/hadoop/fs/FileSystem.html#globStatus

Serialization Annotations

Serialization Annotations

Several adapters have serialization annotations ($output : *). The following lists
identify the serialization parameters that Oracle XQuery for Hadoop supports.

Serialization parameters supported for the text output method:

encoding

normalization-form

Serialization parameters supported for the xml output method:

cdata-section-elements
doctype-public
doctype-system
encoding

indent
normalization-form
omit-xml-declaration

standalone

See Also: "The Influence of Serialization Parameters" sections for
XML and text output methods in XSLT and XQuery Serialization 3.0 at

http://www.w3.org/TR/xslt-xquery-serialization-30/

Oracle XQuery for Hadoop Reference 6-87

Serialization Annotations

6-88 Oracle Big Data Connectors User's Guide

7

Oracle XML Extensions for Hive

This chapter explains how to use the XML extensions for Apache Hive provided on
Oracle Big Data Appliance with Oracle XQuery for Hadoop. The chapter contains the
following sections:

What are the XML Extensions for Apache Hive?
Using the Hive Extensions

Creating XML Tables

XML Function Library for Apache Hive

Note: The features described in this chapter are available only on
Oracle Big Data Appliance. You cannot use them on other Hadoop
clusters.

What are the XML Extensions for Apache Hive?

Oracle XQuery for Hadoop provides XML processing support that enables you to do
the following:

Query large XML files in HDFS as Hive tables

Query XML strings in Hive tables

Query XML file resources in the Hadoop distributed cache

Efficiently extract atomic values from XML without using expensive DOM parsing
Retrieve, generate, and transform complex XML elements

Generate multiple table rows from a single XML value

Manage missing and dirty data in XML

The XML extensions also support these W3C modern standards:

XQuery 1.0

XQuery Update Facility 1.0 (transform expressions)
XPath 2.0

XML Schema 1.0

XML Namespaces

The XML extensions have two components:

XML InputFormat and SerDe for creating XML tables

Oracle XML Extensions for Hive 7-1

Using the Hive Extensions

See "Creating XML Tables" on page 7-2.
= XML function library
See "XML Function Library for Apache Hive" on page 7-10.

Using the Hive Extensions

To enable the Oracle XQuery for Hadoop extensions, use the --auxpath and -1
arguments when starting Hive:

$ hive --auxpath $OXH_HOME/hive/lib -i $OXH_HOME/hive/init.sqgl
The first time you use the extensions, you might want to verify that they are accessible.

The following procedure creates a table named SRC, loads one row into it, and then
calls the xml_query function.

The SRC table is needed only to fulfill a SELECT syntax requirement. It is like the DUAL
table in Oracle Database, which is referenced in SELECT statements to test SQL
functions.

To verify that the extensions are accessible:
1. Log in to an Oracle Big Data Appliance server where you plan to work.
2. Create a text file named src.txt that contains one line:

$ echo "XXX" > src.txt

3. Start the Hive command-line interface (CLI):
$ hive --auxpath $OXH_HOME/hive/lib -i $OXH_HOME/hive/init.sgl
The init.sql file contains the CREATE TEMPORARY FUNCTION statements that declare
the XML functions.
4. Create a simple table and load data from src.txt:
hive> CREATE TABLE src (dummy STRING) ;
hive> LOAD DATA LOCAL INPATH 'src.txt' OVERWRITE INTO TABLE src;
5. Call an Oracle XQuery for Hadoop function for Hive:

hive> SELECT xml_qguery ("x/y", "<x><y>123</y><z>456</z></x>") FROM src;

If the extensions are accessible, then the query returns ["123"].

Creating XML Tables

This section describes how you can use the Hive CREATE TABLE statement to create
tables over large XML documents.

Hive queries over XML tables scale well, because Oracle XQuery for Hadoop splits up
the XML so that the MapReduce framework can process it in parallel.

To support scalable processing and operate in the MapReduce framework, the table
adapter scans for elements to use to create table rows. It parses only the elements that
it identifies as being part of the table; the rest of the XML is ignored. Thus, the XML
table adapter does not perform a true parse of the entire XML document, which
imposes limitations on the input XML. Because of these limitations, you can create
tables only over XML documents that meet the constraints listed in "XQuery

7-2 Oracle Big Data Connectors User's Guide

Creating XML Tables

Transformation Requirements" on page 5-6. Otherwise, you may get errors or incorrect
results.

Hive CREATE TABLE Syntax for XML Tables
The following is the basic syntax to use when creating a Hive table over XML files:

CREATE TABLE table_name (columns)
ROW FORMAT
SERDE 'oracle.hadoop.xquery.hive.OXMLSerDe'
STORED AS
INPUTFORMAT 'oracle.hadoop.xquery.hive.OXMLInputFormat'
OUTPUTFORMAT 'oracle.hadoop.xquery.hive.OXMLOutputFormat'
TBLPROPERTIES (configuration)

columns: All column types in an XML table must be one of the Hive primitive types
given in "About Data Type Conversions" on page 7-13.

configuration: Any of the properties described in "CREATE TABLE Configuration
Properties" on page 7-3.

Note: Inserting into XML tables is not supported.

CREATE TABLE Configuration Properties

oxh-elements
Identifies the names of elements in the XML that map to rows in the table, in a
comma-delimited list. This property must be specified one time. Required.

This example maps each element named foo in the XML to a single row in the Hive
table:

"oxh-elements" = "foo"

The next example maps each element named either foo or bar in the XML to a row in
the Hive table:

"oxh-elements" = "foo, bar"

oxh-column.name

Specifies how an element selected by the oxh-elements property is mapped to
columns in a row. In this property name, replace name with the name of a column in
the table. The value can be any XQuery expression. The initial context item of the
expression (the "." variable) is bound to the selected element.

Be sure to check log files even when a query executes successfully. If a column
expression returns no value or raises a dynamic error, the column value is NULL. The
first time an error occurs, it is logged and query processing continues. Subsequent
errors raised by the same column expression are not logged.

In the following example, the oxh-elements property specifies that each element
named foo in the XML is mapped to a single row in the table. The oxh-column
properties specify that the Hive table column named BAR gets the value of the child
element named bar converted to STRING, and the column named ZIP gets the value of
the child element named zip converted to INT.

CREATE TABLE example (bar STRING, zip INT)
ROW FORMAT
SERDE 'oracle.hadoop.xquery.hive.OXMLSerDe'

Oracle XML Extensions for Hive 7-3

Creating XML Tables

STORED AS
INPUTFORMAT 'oracle.hadoop.xquery.hive.OXMLInputFormat'
OUTPUTFORMAT 'oracle.hadoop.xquery.hive.OXMLOutputFormat'

TBLPROPERTIES (
"oxh-elements" = "foo",
"oxh-column.bar" = "./bat",
"oxh-column.zip" = "./zip"

In this modified definition of the zip column, the column receives a value of -1 if the
foo element does not have a child zip element, or the zip element contains a
nonnumeric value.

"oxh-column.zip" = "
if (./zip castable as xs:int) then
xs:int (./zip)
else
-1

Any column of the table that does not have a corresponding oxh-column property
behaves as if the following property is specified:

"oxh-column.name" = "(./name | ./@name)[1]"

Thus, the default behavior is to select the first child element or attribute that matches
the table column name.

The following two table definitions are equivalent:
Table Definition 1:

CREATE TABLE example (bar STRING, zip INT)
ROW FORMAT
SERDE 'oracle.hadoop.xquery.hive.OXMLSerDe'
STORED AS
INPUTFORMAT 'oracle.hadoop.xquery.hive.OXMLInputFormat'
OUTPUTFORMAT 'oracle.hadoop.xquery.hive.OXMLOutputFormat'
TBLPROPERTIES (
"oxh-elements" = "foo",
"oxh-column.bar" = "(./bar | ./@bar)[1]",
"oxh-column.zip" = "(./zip | ./@zip)[1]"

Table Definition 2:

CREATE TABLE example (bar STRING, zip INT)
ROW FORMAT
SERDE 'oracle.hadoop.xquery.hive.OXMLSerDe'
STORED AS
INPUTFORMAT 'oracle.hadoop.xquery.hive.OXMLInputFormat'
OUTPUTFORMAT 'oracle.hadoop.xquery.hive.OXMLOutputFormat'
TBLPROPERTIES (
"oxh-elements" = "foo"

oxh-namespace.prefix
Defines a namespace binding.

This example binds the prefix myns to the namespace http://example.org:

"oxh-namespace.myns" = "http://example.org"

7-4 Oracle Big Data Connectors User's Guide

Creating XML Tables

You can use this property multiple times to define additional namespaces. The
namespace definitions are used when parsing the XML. The oxh-element and
oxh-column property values can also reference them.

In the following examples, only foo elements in the http: //example.org namespace
are mapped to table rows:

"oxh-namespace.myns" = "http://example.org",
"oxh-elements" = "myns:foo",
"oxh-column.bar" = "./myns:bar"

oxh-entity.name
Defines a set of entity reference definitions.

In the following example, entity references in the XML are expanded from &foo; to
"foo value" and from &bar; to "bar value".

"oxh-entity.foo" = "foo value"
"oxh-entity.bar" = "bar value"

oxh-charset
Specifies the character encoding of the XML files. The supported encodings are UTF-8
(default), ISO-8859-1, and US-ASCIL.

This example sets the character set:

"oxh-charset" = "IS0-8859-1"

CREATE TABLE Examples

This section includes some examples using a simple data set, and other examples
using a very large and complex real-world data set:

= Simple Examples

» Detailed Examples

Simple Examples

These examples show how to create Hive tables over a small XML document that
contains comments posted by users of a fictitious website. Each comment element in the
document has one or more like elements that indicate that the user liked the
comment.

<comments>
<comment id="12345" user="john" text="It is raining :("/>
<comment id="56789" user="kelly" text="I won the lottery!">
<like user="john"/>
<like user="mike"/>
</comment>
<comment id="54321" user="mike" text="Happy New Year!">
<like user="laura"/>
</comment>
</comments>

In the CREATE TABLE examples, the comments.xml input file is in the current working
directory of the local file system.

Example 1 Creating a Table

This example creates a table named COMMENTS with a row for each comment, with the
user, number of likes, and text.

Oracle XML Extensions for Hive 7-5

Creating XML Tables

hive>
CREATE TABLE comments (usr STRING, content STRING, likeCt INT)
ROW FORMAT
SERDE 'oracle.hadoop.xquery.hive.OXMLSerDe'
STORED AS
INPUTFORMAT 'oracle.hadoop.xquery.hive.OXMLInputFormat'
OUTPUTFORMAT 'oracle.hadoop.xquery.hive.OXMLOutputFormat'

TBLPROPERTIES (
"oxh-elements" = "comment",
"oxh-column.usr" = "./@Quser",
"oxh-column.content" = "./@text",
"oxh-column.likeCt" = "fn:count(./like)"

)i

The Hive LOAD DATA command loads comments.xml into the COMMENTS table. See
"Simple Examples" on page 7-5 for the contents of the file.

hive> LOAD DATA LOCAL INPATH 'comments.xml' OVERWRITE INTO TABLE comments;

The following query shows the content of the COMMENTS table.

hive> SELECT usr, content, likeCt FROM comments;

john It is raining :(0
kelly I won the lottery! 2
mike Happy New Year! 1

Example 2 Querying an XML Column

This example is like Example 1, except that the 1ike elements are produced as XML in
a STRING column.

hive>
CREATE TABLE comments2 (usr STRING, content STRING, likes STRING)
ROW FORMAT
SERDE 'oracle.hadoop.xquery.hive.OXMLSerDe'
STORED AS

INPUTFORMAT 'oracle.hadoop.xquery.hive.OXMLInputFormat'
OUTPUTFORMAT 'oracle.hadoop.xquery.hive.OXMLOutputFormat'

TBLPROPERTIES (
"oxh-elements" = "comment",
"oxh-column.usr" = "./@Quser",
"oxh-column.content" = "./@text",
"oxh-column.likes" = "fn:serialize(<likes>{./like}</likes>)"

)

The Hive LOAD DATA command loads comments.xml into the table. See "Simple
Examples" on page 7-5 for the contents of the file.

hive> LOAD DATA LOCAL INPATH 'comments.xml' OVERWRITE INTO TABLE comments2;

The following query shows the content of the COMMENTS2 table.

hive> SELECT usr, content, likes FROM comments2;

john It is raining :(<likes/>
kelly I won the lottery! <likes><like user="john"/><like user="mike"/></likes>
mike Happy New Year! <likes><like user="laura"/></likes>

The next query extracts the user names from the like elements:

hive>
SELECT usr, t.user

7-6 Oracle Big Data Connectors User's Guide

Creating XML Tables

FROM comments?2
LATERAL VIEW
xml_table("likes/like", comments2.likes, struct("./@Quser")) t AS user;

kelly john
kelly mike
mike laura

Example 3 Generating XML in a Single String Column
This example creates a table named COMMENTS3 with a row for each comment, and
produces the XML in a single STRING column.

hive>
CREATE TABLE comments3 (xml STRING)
ROW FORMAT
SERDE 'oracle.hadoop.xquery.hive.OXMLSerDe'
STORED AS

INPUTFORMAT 'oracle.hadoop.xquery.hive.OXMLInputFormat'
OUTPUTFORMAT 'oracle.hadoop.xquery.hive.OXMLOutputFormat'

TBLPROPERTIES (
"oxh-elements" = "comment",
"oxh-column.xml" = "fn:serialize(.)"

)i

The Hive LOAD DATA command loads comments.xml into the table. See "Simple
Examples" on page 7-5 for the contents of the file.

hive> LOAD DATA LOCAL INPATH 'comments.xml' OVERWRITE INTO TABLE comments3;

The following query shows the contents of the XML column:

hive> SELECT xml FROM comments3;

<comment id="12345" user="john" text="It is raining :("/>

<comment id="56789" user="kelly" text="I won the lottery!">
<like user="john"/>
<like user="mike"/>

</comment>

<comment id="54321" user="mike" text="Happy New Year!">
<like user="laura"/>

</comment>

The next query extracts the IDs and converts them to integers:
hive> SELECT xml_query as_int("comment/@id", xml) FROM comments3;
12345

56789
54321

Detailed Examples

These examples use data from OpenStreetMap, which provides free map data for the
entire world. You can export the data as XML for specific geographic regions or the
entire planet. An OpenStreetMap XML document mainly contains a sequence of node,
way, and relation elements.

In these examples, the OpenStreetMap XML files are stored in the /user/name/osm
HDFS directory.

Oracle XML Extensions for Hive 7-7

Creating XML Tables

See Also:

s To download OpenStreetMap data:
http://www.openstreetmap.org/export

= For information about the OpenStreetMap XML format:

http://wiki.openstreetmap.org/wiki/0OSM_XML

Example 1 Creating a Table Over OpenStreetMap XML

This example creates a table over OpenStreetMap XML with one row for each node
element as follows:

s The id, lat, lon, and user attributes of the node element are mapped to table
columns.

s The year is extracted from the timestamp attribute and mapped to the YEAR
column. If a node does not have a timestamp attribute, then -1 is used for the year.

= If the node element has any child tag elements, then they are stored as an XML
string in the TAGS column. If node has no child tag elements, then column value is
NULL.

hive>
CREATE EXTERNAL TABLE nodes (
id BIGINT,
latitude DOUBLE,
longitude DOUBLE,
year SMALLINT,
tags STRING
)
ROW FORMAT
SERDE 'oracle.hadoop.xquery.hive.OXMLSerDe'
STORED AS
INPUTFORMAT 'oracle.hadoop.xquery.hive.OXMLInputFormat'
OUTPUTFORMAT 'oracle.hadoop.xquery.hive.OXMLOutputFormat'
LOCATION '/user/name/osm'

TBLPROPERTIES (
"oxh-elements" = "node",
"oxh-column.id" = "./@id",
"oxh-column.latitude" = "./@lat",
"oxh-column.longitude" = "./@lon",

"oxh-column.year" = "
if (fn:exists(./@timestamp)) then
fn:year-from-dateTime (xs:dateTime(./@timestamp))
else
-1

1
"

"oxh-column.tags" =
if (fn:exists(./tag)) then
fn:serialize(<tags>{./tag}</tags>)
else

The following query returns the number of nodes per year:

hive> SELECT year, count(*) FROM nodes GROUP BY year;

This query returns the total number of tags across nodes:

7-8 Oracle Big Data Connectors User's Guide

Creating XML Tables

hive>
SELECT sum(xml_query_as_int("count (tags/tag)", tags))
FROM nodes;

Example 2

In OpenStreetMap XML, the node, way, and relation elements share a set of common
attributes such as the user who contributed the data. The next table produces one row
for each node, way, and relation element.

See Also: For a description of the OpenStreetMap elements and
attributes:

http://wiki.openstreetmap.org/wiki/Elements

hive>
CREATE EXTERNAL TABLE osm (
id BIGINT,
uid BIGINT,
type STRING
)
ROW FORMAT
SERDE 'oracle.hadoop.xquery.hive.OXMLSerDe'
STORED AS
INPUTFORMAT 'oracle.hadoop.xquery.hive.OXMLInputFormat'
OUTPUTFORMAT 'oracle.hadoop.xquery.hive.OXMLOutputFormat'
LOCATION '/user/name/osm'

TBLPROPERTIES (
"oxh-elements" = "node, way, relation",
"oxh-column.id" = "./e@id",
"oxh-column.uid" = "./@Quid",
"oxh-column.type" = "./name()"

)i

The following query returns the number of node, way, and relation elements. The
TYPE column is set to the name of the selected element, which is either node, way, or
relation.

hive>
SELECT type, count(*)
FROM osm
GROUP BY type;

This query returns the number of distinct user IDs:

hive>
SELECT count (*)
FROM (
SELECT uid
FROM osm
GROUP BY uid
)t

Oracle XML Extensions for Hive 7-9

XML Function Library for Apache Hive

XML Function Library for Apache Hive

This section describes the functions provided with the XML Extensions for Hive. It
contains the following topics:

= Online Documentation of Functions

= About Hive Access to External Files

= About Data Type Conversions

The XML Extensions for Hive contain the following functions:
= xml_query

= xml_query_as_primitive

s xml _exists

s xml table

7-10 Oracle Big Data Connectors User's Guide

XML Function Library for Apache Hive

Online Documentation of Functions

You can get online Help for the Hive extension functions by using this command:

DESCRIBE FUNCTION [EXTENDED] function name;

This example provides a brief description of the xm1_guery function:

hive> describe function xml_gquery;
OK
xml_query (query, bindings) - Returns the result of the query as a STRING array

The EXTENDED option provides a detailed description and examples:

hive> describe function extended xml_query;

OK

xml_query (query, bindings) - Returns the result of the query as a STRING array
Evaluates an XQuery expression with the specified bindings. The query argument
must be a STRING and the bindings argument must be a STRING or a STRUCT. If the
bindings argument is a STRING, it is parsed as XML and bound to the initial
context item of the query. For example:

> SELECT xml_query("x/y", "<x><y>hello</y><z/><y>world</y></x>") FROM src LIMIT

1;
["hello", "world"]

Oracle XML Extensions for Hive 7-11

About Hive Access to External Files

About Hive Access to External Files

The Hive functions have access to the following external file resources:
= XML schemas
See http://www.w3.org/TR/xquery/#id-schema-import.
= XML documents
See http://www.w3.org/TR/xpath-functions/#func-doc.
= XQuery library modules
See http://www.w3.org/TR/xquery/#id-module-import.

You can address these files by their URI from either HTTP (by using the http://. ..
syntax) or the local file system (by using the file://... syntax). In this example,
relative file locations are resolved against the local working directory of the task, so
that URIs such as bar.xsd can be used to access files that were added to the distributed

cache:

xml_query ("
import schema namespace tns='http://example.org' at 'bar.xsd';
validate { ... }

"
’

To access a local file, first add it to the Hadoop distributed cache using the Hive ADD
FILE command. For example:

ADD FILE /local/mydir/thisfile.xsd;

Otherwise, you must ensure that the file is available on all nodes of the cluster, such as
by mounting the same network drive or simply copying the file to every node. The
default base URI is set to the local working directory.

See Also: For information about the default base URI, see XQuery
1.0:An XML Query Language at

http://www.w3.org/TR/xquery/#dt-base-uri

7-12 Oracle Big Data Connectors User's Guide

XML Function Library for Apache Hive

About Data Type Conversions

Table 7-1 shows the conversions that occur automatically between Hive primitives
and XML schema types.

Table 7-1 Data Type Equivalents

Hive XML schema
TINYINT xs:byte
SMALLINT xs:short

INT xs:int
BIGINT xs:long
BOOLEAN xs:boolean
FLOAT xs:float
DOUBLE xs:double
STRING xs:string

Oracle XML Extensions for Hive 7-13

xml_query

xml_query

Signature

Description

Return Value

Examples

Returns the result of a query as an array of STRING values.

xml_query (

STRING query,

{ STRING | STRUCT } bindings
) as ARRAY<STRING>

query

An XQuery or XPath expression. It must be a constant value, because it is only read
the first time the function is evaluated. The initial query string is compiled and reused
in all subsequent calls.

You can access files that are stored in the Hadoop distributed cache and HTTP
resources (http://...). Use the XQuery fn:doc function for XML documents, and the
fn:unparsed-text and fn:parsed-text-lines functions to access plain text files. See
Example 4.

If an error occurs while compiling the query, the function raises an error. If an error
occurs while evaluating the query, the error is logged (not raised) and an empty array
is returned.

bindings
The input that the query processes. The value can be an XML STRING or a STRUCT of
variable values:

= STRING: The string is bound to the initial context item of the query as XML. See
Example 1.

= STRUCT: A STRUCT with an even number of fields. Each pair of fields defines a
variable binding (name, value) for the query. The name fields must be type STRING,
and the value fields can be any supported primitive. See "About Data Type
Conversions" on page 7-13 and Example 2.

A Hive array of STRING values, which are the result of the query converted to a
sequence of atomic values. If the result of the query is empty, then the return value is
an empty array.

Example 1 Using a STRING Binding
This example parses and binds the input XML string to the initial context item of the
query "x/y":

> SELECT xml_query("x/y", "<x><y>hello</y><z/><y>world</y></x>") FROM src LIMIT 1;
["hello", "world"]

7-14 Oracle Big Data Connectors User's Guide

xml_query

Example 2 Using a STRUCT Binding

In this example, the second argument is a STRUCT that defines two query variables,
$data and $value. The values of the variables in the STRUCT are converted to XML
schema types as described in "About Data Type Conversions" on page 7-13.

> SELECT xml_query(
"fn:parse-xml ($data) /x/y[@id = $value]",

struct (
"data", "<x><y id='1l'>hello</y><z/><y id='2'>world</y></x>",
"value", 1

)
) FROM src LIMIT 1;
["hello"]

Example 3 Obtaining Serialized XML
This example uses the fn:serialize function to return serialized XML:

> SELECT xml_query(
"for $y in x/y
return fn:serialize(S$y)
n
nex><y>hello</y><z/><y>world</y></x>"
) FROM src LIMIT 1;
["<y>hello</y>", "<y>world</y>"]

Example 4 Accessing the Hadoop Distributed Cache

This example adds a file named test.xml to the distributed cache, and then queries it
using the fn:doc function. The file contains the value
<x><y>hello</y><z/><y>world</y></x>.

> ADD FILE test.xml;
> SELECT xml_query("fn:doc('test.xml')/x/y", NULL) FROM src LIMIT 1;
["hello", "world"]

Example 5 Results of a Failed Query

The next example returns an empty array because the input XML is invalid. The XML
parsing error will be written to the log;:

> SELECT xml_query("x/y", "<x><y>hello</y></invalid") FROM src LIMIT 1;
[

Oracle XML Extensions for Hive 7-15

xml_query_as_primitive

xml_query_as_primitive

Maps the result of an XQuery expression to a Hive primitive value. Each Hive
primitive data type has a separate function named for it:

Signature

xml_query_as_bigint
xml_query_as_boolean
xml_query_as_double
xml_query_as_float
xml_query_as_int
xml_query_as_smallint
xml_query_as_string

xml_query_as_tinyint

xml_query_as_primitive (

STRING query,
{STRUCT | STRING} bindings,

} as primitive

Description

query
An XQuery or XPath expression.

bindings
The input that the query processes. The value can be an XML STRING or a STRUCT of
variable values:

Return Value

STRING: The string is bound to the initial context item of the query as XML. See
Example 1.

STRUCT: A STRUCT with an even number of fields. Each pair of fields defines a
variable binding (name, value) for the query. The name fields must be type STRING,
and the value fields can be any supported primitive. See "About Data Type
Conversions" on page 7-13 and Example 2.

The first item in the result of the query is cast to the XML schema type that maps
to the primitive type of the function. If the query returns multiple items, then all
but the first are ignored.

The result of the query as a Hive primitive value

NULL if the query returns an empty result

7-16 Oracle Big Data Connectors User's Guide

xml_query_as_primitive

Examples

Example 1 Using a STRING Binding

This example parses and binds the input XML string to the initial context item of the
query "x/y":

> SELECT xml_query as_string("x/y", "<x><y>hello</y></x>") FROM src LIMIT 1;
"hello"

The following are string binding examples that use other primitive functions:
> SELECT xml_query as_int ("x/y", "<x><y>123</y></x>") FROM src LIMIT 1;

123

> SELECT xml_query as_double("x/y", "<x><y>12.3</y></x>") FROM src LIMIT 1;
12.3

> SELECT xml_query as_boolean("x/y", "<x><y>true</y></x>") FROM src LIMIT 1;
true

Example 2 Using a STRUCT Binding

In this example, the second argument is a STRUCT that defines two query variables,
$data and $value. The values of the variables in the STRUCT are converted to XML
schema types as described in "About Data Type Conversions" on page 7-13.

> SELECT xml_query as_string(
"fn:parse-xml ($data) /x/y[@id = $value]”,

struct (
"data", "<x><y id='1l'>hello</y><z/><y id='2'>world</y></x>",
"value", 2

)
) FROM src LIMIT 1;
"world"

Example 3 Returning Multiple Query Results
This example returns only the first item (hello) from the query. The second item
(world) is discarded.

> SELECT xml_query as_string("x/y", "<x><y>hello</y><z/><y>world</y></x>") FROM
src LIMIT 1;
"hello"

Example 4 Returning Empty Query Results
This example returns NULL because the result of the query is empty:
> SELECT xml_query as_string("x/foo", "<x><y>hello</y><z/><y>world</y></x>") FROM

src LIMIT 1;
NULL

Example 5 Obtaining Serialized XML
These examples use the fn:serialize function to return complex XML elements as a
STRING value:

> SELECT xml_query as_string("fn:serialize(x/y[1l])",
"<x><y>hello</y><z/><y>world</y></x>") FROM src LIMIT 1;
"<y>hello</y>"

> SELECT xml_query as_string(
"fn:serialize (<html><head><title>{$desc}</title></head><body>Name:

Oracle XML Extensions for Hive 7-17

xml_query_as_primitive

{$name}</body></html>)",
struct (
"desc", "Employee Details",
"name", "John Doe"

)
) FROM src LIMIT 1;
"<html><head><title>Employee Details</title></head><body>Name: John
Doe</body></html>"

Example 6 Accessing the Hadoop Distributed Cache

This example adds a file named test.xml to the distributed cache, and then queries it
using the fn:doc function. The file contains the value
<x><y>hello</y><z/><y>world</y></x>.

> ADD FILE test.xml;

> SELECT xml_query as_string("fn:doc('test.xml')/x/y[1]", NULL) FROM src LIMIT 1;
"hello"

Example 7 Results of a Failed Query
This example returns NULL because </invalid is missing an angle bracket. An XML
parsing error is written to the log:

> SELECT xml_query as_string("x/y", "<x><y>hello</invalid") FROM src LIMIT 1;
NULL

This example returns NULL because foo cannot be cast as xs: float. A cast error is
written to the log:

> SELECT xml_query as_float ("x/y", "<x><y>foo</y></x>") FROM src LIMIT 1;
NULL

7-18 Oracle Big Data Connectors User's Guide

xml_exists

xml_exists
Tests if the result of a query is empty.
Signature
xml_exists(
STRING query,
{ STRING | STRUCT } bindings
) as BOOLEAN
Description
query

An XQuery or XPath expression.

bindings
The input that the query processes. The value can be an XML STRING or a STRUCT of
variable values:

» STRING: The string is bound to the initial context item of the query as XML.

= STRUCT: A STRUCT with an even number of fields. Each pair of fields defines a
variable binding (name, value) for the query. The name fields must be type STRING,
and the value fields can be any supported primitive. See "About Data Type
Conversions" on page 7-13.

Return Value

true if the result of the query is not empty, and false otherwise.

false if the query raises a dynamic error.

Notes

The first dynamic error raised by a query is logged, but subsequent errors are
suppressed.

Examples

Example 1 STRING Binding
This example parses and binds the input XML string to the initial context item of the
query "x/y":

> SELECT xml_exists("x/y", "<x><y>123</y></x>") FROM src LIMIT 1;
true

Example 2 STRUCT Binding
This example defines two query variables, $data and $value.

> SELECT xml_exists(
"parse-xml ($data) /x/y[@id = $value]",

struct (
"data", "<x><y id='1l'/><y id='2'/></x>",
"value", 2

Oracle XML Extensions for Hive 7-19

xml_exists

) FROM src LIMIT 1;
true

Example 3 Error Logging
In this example, an error is written to the log, because the input XML is invalid.

> SELECT xml_exists("x/y", "<x><y>123</invalid></x>") FROM src LIMIT 1;
false

7-20 Oracle Big Data Connectors User's Guide

xml_table

xml_table

Signature

Description

A table-generating function (UDTF) that maps an XML value to zero or more table
rows. This function enables nested repeating elements in XML to be mapped to Hive
table rows.

xml_table (
STRUCT? namespaces,
STRING query,
{STRUCT | STRING} bindings,
STRUCT? columns

namespaces
Identifies the namespaces that the query and column expressions can use. Optional.

The value is a STRUCT with an even number of STRING fields. Each pair of fields defines
a namespace binding (prefix, URI) that can be used by the query or the column
expressions. See Example 3.

query

An XQuery or XPath expression that generates a table row for each returned value. It
must be a constant value, because it is only read the first time the function is
evaluated. The initial query string is compiled and reused in all subsequent calls.

If a dynamic error occurs during query processing, then the function does not raise an
error, but logs it the first time. Subsequent dynamic errors are not logged.

bindings
The input that the query processes. The value can be an XML STRING or a STRUCT of
variable values:

= STRING: The string is bound to the initial context item of the query as XML. See
Example 1.

= STRUCT: A STRUCT with an even number of fields. Each pair of fields defines a
variable binding (name, value) for the query. The name fields must be type STRING,
and the value fields can be any supported primitive. See "About Data Type
Conversions" on page 7-13.

columns
The XQuery or XPath expressions that define the columns of the generated rows.
Optional.

The value is a STRUCT that contains additional XQuery expressions, which define the
column values in the row. The XQuery expressions must be constant STRING values,
because they ares only read the first time the function is evaluated. For each column
expression in the STRUCT, there is one column in the table.

For each item returned by the query, the column expressions are evaluated with the
current item as the initial context item of the expression. The results of the column
expressions are converted to STRING values and become the values of the row.

Oracle XML Extensions for Hive 7-21

xml_table

Return Value

Notes

Examples

If the result of a column expression is empty or if a dynamic error occurs while
evaluating the column expression, then the corresponding column value is NULL. If a
column expression returns more than one item, then all but the first are ignored.

Omitting the columns argument is the same as specifying 'struct(".") '. See Example
2.

One table row for each item returned by the guery argument.

The XML table adapter enables Hive tables to be created over large XML files in HDFS.
See "Creating XML Tables" on page 7-2.

Example 1 Using a STRING Binding
The query "x/y" returns two <y> elements, and so two table rows are generated.

"non

Because there are two column expressions ("./z", "./w"), each row has two columns.

> SELECT xml_table(
"x/y",
"<x>
<y>
<z>a</z>
<w>b</w>
</y>
<y>
<z>c</z>
</y>
</x>

n
i

struct("./z", "./w")
) AS (z, w)
FROM src;

a b
c NULL

Example 2 Using the Columns Argument

The following two queries are equivalent. The first query explicitly specifies the value
of the columns argument:

> SELECT xml_table(
"x/y",
"<x><y>hello</y><y>world</y></x>",
struct(".")
) As (y)
FROM src;

hello
world
The second query omits the columns argument, which defaults to struct ("."):

> SELECT xml_table(
"x/y“’

7-22 Oracle Big Data Connectors User's Guide

xml_table

nex><y>hello</y><y>world</y></x>"
) AS (y)
FROM src;

hello
world

Example 3 Using the Namespaces Argument

This example specifies the optional namespaces argument, which has an ns prefix and
a URI of http://example.org

> SELECT xml_table(
struct("ns", "http://example.org"),
"ns:x/ns:y",
"<x xmlns='http://example.org'><y><z/></y><y><z/><z/></y></x>",
struct ("count (./ns:z)")
) AS (y)
FROM src;

Example 4 Querying a Hive Table of XML Documents

This example queries a table named COMMENTS, which has a single column named XML_
STR of type STRING. It contains these three rows:

> SELECT xml_str FROM comments;

<comment i1d="12345" user="john" text="It is raining: ("/>

<comment 1d="56789" user="kelly" text="I won the lottery!"><like
user="john"/><like user="mike"/></comment>

<comment id="54321" user="mike" text="Happy New Year!'"><like
user="laura"/></comment>

The following query shows how to extract the user, text, and number of likes from the
COMMENTS table.

> SELECT t.id, t.usr, t.likes
FROM comments LATERAL VIEW xml_ table(
"comment",
comments.xml str,
struct("./@id", "./@user", "fn:count(./like)")
) t AS id, usr, likes;

12345 john 0
56789 kelly 2
54321 mike 1

Note: You could use the xml_query_as_string function to achieve
the same result in this example. However, xml_table is more efficient,
because a single function call sets all three column values and parses
the input XML only once for each row. The xml_query_as_string
function requires a separate function call for each of the three columns
and reparses the same input XML value each time.

Oracle XML Extensions for Hive 7-23

xml_table

Example 5 Mapping Nested XML Elements to Table Rows

This example shows how to use xml_table to flatten nested, repeating XML elements
into table rows. See Example 4 for the COMMENTS table.

> SELECT t.i, t.u, t.l
FROM comments LATERAL VIEW xml table (
"let $comment := ./comment
for $like in $comment/like
return
<r>
<id>{$comment /@id/data()}</id>
<user>{$comment /@user/data()}</user>
<like>{$like/@user/data()}</like>
</r>
“I
comments.xml_str,
struct("./id", "./user", "./like")
) t As i, u, 1;

56789 kelly john
56789 kelly mike
54321 mike laura

Example 6 Mapping Optional Nested XML Elements to Table Rows

This example is a slight modification of Example 5 that still produces a row when a
comment has no likes. See Example 4 for the COMMENTS table.

> SELECT t.i, t.u, t.l
FROM comments LATERAL VIEW xml table (
"let $comment := ./comment
for $like allowing empty in $comment/like
return
<r>
<id>{$comment/@id/data()}</id>
<user>{$comment /@user/data() }</user>
<like>{$like/@user/data()}</like>
</r>

n
7

comments.xml_str,
struct("./id", "./user", "./like")
) t AS i, u, 1;

12345 john

56789 kelly john

56789 kelly mike

54321 mike laura

Example 7 Creating a New View

You can create views and new tables using xm1_table, the same as any
table-generating function. This example creates a new view named COMMENTS_LIKES
from the COMMENTS table:

> CREATE VIEW comments_likes AS
SELECT xml_table(
"comment",
comments.xml_str,
struct("./@id", "count(./like)")
) AS (id, likeCt)
FROM comments;

7-24 Oracle Big Data Connectors User's Guide

xml_table

This example queries the new view:

> SELECT * FROM comments_likes
WHERE CAST(likeCt AS INT) != 0;

56789 2
54321 1

Example 8 Accessing the Hadoop Distributed Cache

You can access XML documents and text files added to the distributed cache by using
the fn:doc and fn:unparsed-text functions.

This example queries a file named test.xml that contains the string
"<x><y>hello</y><z/><y>world</y></x>"

> ADD FILE test.xml;
> SELECT xml_table("fn:doc('test.xml')/x/y", NULL) AS y FROM src;

hello
world

Oracle XML Extensions for Hive 7-25

xml_table

7-26 Oracle Big Data Connectors User's Guide

Part IV

Oracle R Advanced Analytics for Hadoop

This part contains the following chapters:
s Chapter 8, "Using Oracle R Advanced Analytics for Hadoop"
s Chapter 9, "ORCH Library Reference"

8

Using Oracle R Advanced Analytics for Hadoop

This chapter describes R support for big data. It contains the following sections:

About Oracle R Advanced Analytics for Hadoop

Access to HDFS Files

Access to Apache Hive

Access to Oracle Database

Analytic Functions in Oracle R Advanced Analytics for Hadoop
ORCH mapred.config Class

Examples and Demos of Oracle R Advanced Analytics for Hadoop
Security Notes for Oracle R Advanced Analytics for Hadoop

About Oracle R Advanced Analytics for Hadoop

Oracle R Advanced Analytics for Hadoop is a collection of R packages that provide:

Interfaces to work with Apache Hive tables, the Apache Hadoop compute
infrastructure, the local R environment, and Oracle database tables

Predictive analytic techniques, written in R or Java as Hadoop MapReduce jobs,
that can be applied to data in HDFS files

You install and load this package as you would any other R package. Using simple R
functions, you can perform tasks like these:

Access and transform HDFS data using a Hive-enabled transparency layer
Use the R language for writing mappers and reducers

Copy data between R memory, the local file system, HDFS, Hive, and Oracle
databases

Schedule R programs to execute as Hadoop MapReduce jobs and return the results
to any of those locations

Several analytic algorithms are available in Oracle R Advanced Analytics for Hadoop:
linear regression, neural networks for prediction, matrix completion using low rank
matrix factorization, clustering, and nonnegative matrix factorization. They are written
in either Java or R.

To use Oracle R Advanced Analytics for Hadoop, you should be familiar with
MapReduce programming, R programming, and statistical methods.

Using Oracle R Advanced Analytics for Hadoop 8-1

Access to HDFS Files

Oracle R Advanced Analytics for Hadoop APls

Oracle R Advanced Analytics for Hadoop provides access from a local R client to
Apache Hadoop using functions with these prefixes:

= hadoop: Identifies functions that provide an interface to Hadoop MapReduce

= hdfs: Identifies functions that provide an interface to HDFS

= orch: Identifies a variety of functions; orch is a general prefix for ORCH functions
= ore: Identifies functions that provide an interface to a Hive data store

Oracle R Advanced Analytics for Hadoop uses data frames as the primary object type,
but it can also operate on vectors and matrices to exchange data with HDFS. The APIs
support the numeric, integer, and character data types in R.

All of the APIs are included in the ORCH library. The functions are listed in Chapter 9 in
alphabetical order.

See Also: The R Project website at http: //www.r-project.org/

Access to HDFS Files

For Oracle R Advanced Analytics for Hadoop to access the data stored in HDEFS, the
input files must comply with the following requirements:

= Allinput files for a MapReduce job must be stored in one directory as the parts of
one logical file. Any valid HDFS directory name and file name extensions are
acceptable.

= Any file in that directory with a name beginning with an underscore (_) is ignored.
s The input files must be in comma-separated value (CSV) format as follows:

- key:=string | "™

- value := string[,value]

- line := [key\t]value

- string := char[string]

char := regexp([",\n])

Input File Format Examples
The following are examples of acceptable CSV input files:

s CSV files with a key:

"1\tHello,world"
"2\tHi, there"

s CSV files with no key:

"Hello,world"
"Hi, there"

s CSV files with a NULL key:

"\tHello,world"
"\tHi, there"

8-2 Oracle Big Data Connectors User's Guide

Access to Apache Hive

Access to Apache Hive

Apache Hive provides an alternative storage and retrieval mechanism to HDFS files
through a querying language called HiveQL, which closely resembles SQL. Hive uses
MapReduce for distributed processing. However, the data is structured and has
additional metadata to support data discovery. Oracle R Advanced Analytics for
Hadoop uses the data preparation and analysis features of HiveQL, while enabling
you to use R language constructs.

See Also: The Apache Hive website at http://hive.apache.org

ORE Functions for Hive

You can connect to Hive and manage objects using R functions that have an ore prefix,
such as ore.connect. If you are also using Oracle R Enterprise, then you recognize
these functions. The ore functions in Oracle R Enterprise create and manage objects in
an Oracle database, and the ore functions in Oracle R Advanced Analytics for Hadoop
create and manage objects in a Hive database. You can connect to one database at a
time, either Hive or Oracle Database, but not both simultaneously.

The following ORE functions are supported in Oracle R Advanced Analytics for
Hadoop:

as.ore
as.ore.character
as.ore.frame
as.ore.integer
as.ore.logical
as.ore.numeric
as.ore.vector
is.ore
is.ore.character
is.ore.frame
is.ore.integer
is.ore.logical
is.ore.numeric
is.ore.vector
ore.create
ore.drop

ore.get

ore.pull
ore.push
ore.recode

This release does not support ore. factor, ore.list, or ore.object.
These aggregate functions from OREStats are also supported:

aggregate
fivenum
I0R
median
quantile
sd

var*

*For vectors only

Using Oracle R Advanced Analytics for Hadoop 8-3

Access to Apache Hive

Generic R Functions Supported in Hive

Oracle R Advanced Analytics for Hadoop also overloads the following standard
generic R functions with methods to work with Hive objects.

Character methods
casefold, chartr, gsub, nchar, substr, substring, tolower, toupper

This release does not support grepl or sub.

Frame methods
m attach, show

L] [r $/ $<_I [[/ [[<_
s Subset functions: head, tail

s Metadata functions: dim, length, NROW, nrow, NCOL, ncol, names, names<-,
colnames, colnames<-

s Conversion functions: as.data.frame, as.env, as.list

oe

[}
o

oe

, %/%, /

= Arithmetic operators: +, -, *, *,
s Compare, Logic, xor, !
m Test functions: is.finite, is.infinite, is.na, is.nan

s Mathematical transformations: abs, acos, asin, atan, ceiling, cos, exp, expml,
floor, log, 1ogl0, loglp, log2, logb, round, sign, sin, sqrt, tan, trunc

m Basic statistics: colMeans, colSums, rowMeans, rowSums, Summary, summary, unique
s by, merge
s unlist, rbind, cbind, data.frame, eval

This release does not support dimnames, interaction, max.col, row.names,
row.names<-, scale, split, subset, transform, with, or within.

Logical methods
ifelse, Logic, xor, !

Matrix methods
Not supported

Numeric methods
» Arithmetic operators: +, -, *, *,

4

9
)

oe

, %1%,/

m Test functions: is.finite, is.infinite, is.nan

m abs, acos, asin, atan, ceiling, cos, exp, expml, floor, log, loglp, log2, loglQ,
logb, mean, round, sign, sin, sqgrt, Summary, summary, tan, trunc, zapsmall

This release does not support atan2, bessell, besselk, besseld, besselY, diff,
factorial, 1factorial, pmax, pmin, or tabulate.

Vector methods
m show, length, c

m Test functions: is.vector, is.na

s Conversion functions: as.vector, as.character, as.numeric, as. integer,
as.logical

L [/ [<_r |

8-4 Oracle Big Data Connectors User's Guide

Access to Apache Hive

s by, Compare, head, $in%, paste, sort, table, tail, tapply, unique
This release does not support interaction, lengthb, rank, or split.

Example 8-1 shows simple data preparation and processing. For additional details, see
"Support for Hive Data Types" on page 8-5.

Example 8-1 Using R to Process Data in Hive Tables

Connect to Hive
ore.connect (type="HIVE")

Attach the current envt. into search path of R
ore.attach()

create a Hive table by pushing the numeric columns of the iris data set
IRIS_TABLE <- ore.push(iris[1:4])

Create bins based on Petal Length
IRIS_TABLESPetalBins = ifelse(IRIS_TABLESPetal.Length < 2.0, "SMALL PETALS",
ifelse(IRIS_TABLESPetal.Length < 4.0, "MEDIUM PETALS",
ifelse(IRIS_TABLESPetal.Length < 6.0,
"MEDIUM LARGE PETALS", "LARGE PETALS")))

#PetalBins is now a derived column of the HIVE object
> names (IRIS_TABLE)
[1] "Sepal.Length" "Sepal.Width" "Petal.Length" "Petal.Width" "PetalBins"

Based on the bins, generate summary statistics for each group
aggregate (IRIS_TABLESPetal.Length, by = list(PetalBins = IRIS_TABLESPetalBins),

+ FUN = summary)

1 LARGE PETALS 6 6.025000 6.200000 6.354545 6.612500 6.9 0
2 MEDIUM LARGE PETALS 4 4.418750 4.820000 4.888462 5.275000 5.9 0
3 MEDIUM PETALS 3 3.262500 3.550000 3.581818 3.808333 3.9 0
4 SMALL PETALS 1 1.311538 1.407692 1.462000 1.507143 1.9 0

Warning message:
ORE object has no unique key - using random order

Support for Hive Data Types

Oracle R Advanced Analytics for Hadoop can access any Hive table containing
columns with string and numeric data types such as tinyint, smallint, bigint, int,
float, and double. There is no support for these complex data types:

array
binary
map
struct
timestamp
union

If you attempt to access a Hive table containing an unsupported data type, then you
get an error message. To access the table, you must convert the column to a supported
data type.

To convert a column to a supported data type:
1. Open the Hive command interface:

$ hive
hive>

Using Oracle R Advanced Analytics for Hadoop 8-5

Access to Apache Hive

2, Identify the column with an unsupported data type:

hive> describe table name;

3. View the data in the column:

hive> select column _name from table name;

4. Create a table for the converted data, using only supported data types.
5. Copy the data into the new table, using an appropriate conversion tool.

Example 8-2 shows the conversion of an array. Example 8-3 and Example 84 show
the conversion of timestamp data.

Example 8-2 Converting an Array to String Columns

R> ore.sync(table="tl1")
Warning message:
table tl contains unsupported data types

hive> describe tl1;
OK
coll int
col2 array<string>

hive> select * from tl;

OK

1 ["a","D*, "c"]
2 ["a", "e*, "£"]
3 ["g", "h", "i"]

hive> create table t2 (cl string, c2 string, c2 string);
hive> insert into table t2 select col2[0], col2[1l], col2[2] from tl1;

R> ore.sync(table="t2")
R> ore.ls()

[1] "t2"

R> t28%cl

[1] "a" "d" "g"

Example 8-3 uses automatic conversion of the timestamp data type into string. The
data is stored in a table named t5 with a column named tstmp.

Example 8-3 Converting a Timestamp Column

hive> select * from t5;

hive> create table t6 (timestmp string);

hive> insert into table t6 SELECT tstmp from t5;

Example 8-4 uses the Hive get_json_object function to extract the two columns of

interest from the JSON table into a separate table for use by Oracle R Advanced
Analytics for Hadoop.

8-6 Oracle Big Data Connectors User's Guide

Access to Apache Hive

Example 8-4 Converting a Timestamp Column in a JSON File

hive> select * from t3;
OK

{"custId":1305981, "movieId":null, "genreId":null, "time":"2010-12-30:23:59:32", "reco
mmended" :null, "activity":9}

hive> create table t4 (custid int, time string);

hive> insert into table t4 SELECT cast(get_json_object(cl, 'S$.custId') as int),
cast (get_json_object(cl, '$S.time') as string) from t3;

Usage Notes for Hive Access

The Hive command language interface (CLI) is used for executing queries and
provides support for Linux clients. There is no JDBC or ODBC support.

The ore.create function creates Hive tables only as text files. However, Oracle R
Advanced Analytics for Hadoop can access Hive tables stored as either text files or
sequence files.

You can use the ore.exec function to execute Hive commands from the R console. For
a demo, run the hive_sequencefile demo.

Oracle R Advanced Analytics for Hadoop can access tables and views in the default
Hive database only. To allow read access to objects in other databases, you must
expose them in the default database. For example, you can create views.

Oracle R Advanced Analytics for Hadoop does not have a concept of ordering in Hive.
An R frame persisted in Hive might not have the same ordering after it is pulled out of
Hive and into memory. Oracle R Advanced Analytics for Hadoop is designed
primarily to support data cleanup and filtering of huge HDFS data sets, where
ordering is not critical. You might see warning messages when working with
unordered Hive frames:

Warning messages:
1: ORE object has no unique key - using random order
2: ORE object has no unique key - using random order

To suppress these warnings, set the ore.warn.order option in your R session:

R> options (ore.warn.order = FALSE)

Example: Loading Hive Tables into Oracle R Advanced Analytics for Hadoop

Table 9-1 provides an example of loading a Hive table into an R data frame for
analysis. It uses these Oracle R Advanced Analytics for Hadoop functions:

hdfs.attach
ore.attach
ore.connect
ore.create
ore.hiveOptions
ore.sync

Example 8-5 Loading a Hive Table

Connect to HIVE metastore and sync the HIVE input table into the R session.
ore.connect (type="HIVE")

ore.sync (table="datatab")

ore.attach()

Using Oracle R Advanced Analytics for Hadoop 8-7

Access to Oracle Database

The "datatab" object is a Hive table with columns named custid, movieid,
activity, and rating.
Perform filtering to remove missing (NA) values from custid and movieid columns
Project out three columns: custid, movieid and rating
tl <- datatab[!is.na(datatab$custid) &

lis.na(datatab$movieid) &

datatabSactivity==1, c("custid", "movieid", "rating")]
Set HIVE field delimiters to ','. By default, it is Ctrl+a for text files but
ORCH 2.0 supports only ',' as a file separator.

ore.hiveOptions(delim="',")

Create another Hive table called "datatabl" after the transformations above.
ore.create (tl, table="datatabl")

Use the HDFS directory, where the table data for datatabl is stored, to attach
it to ORCH framework. By default, this location is "/user/hive/warehouse"
dfs.id <- hdfs.attach("/user/hive/warehouse/datatabl")

dfs.id can now be used with all hdfs.*, orch.* and hadoop.* APIs of ORCH for
further processing and analytics.

Access to Oracle Database

Oracle R Advanced Analytics for Hadoop provides a basic level of database access.
You can move the contents of a database table to HDFS, and move the results of HDFS
analytics back to the database.

You can then perform additional analysis on this smaller set of data using a separate
product named Oracle R Enterprise. It enables you to perform statistical analysis on
database tables, views, and other data objects using the R language. You have
transparent access to database objects, including support for Business Intelligence and
in-database analytics.

Access to the data stored in an Oracle database is always restricted to the access rights
granted by your DBA.

Oracle R Enterprise is included in the Oracle Advanced Analytics option to Oracle
Database Enterprise Edition. It is not one of the Oracle Big Data Connectors.

See Also: Oracle R Enterprise User's Guide

Usage Notes for Oracle Database Access

Oracle R Advanced Analytics for Hadoop uses Sqoop to move data between HDFS
and Oracle Database. Sqoop imposes several limitations on Oracle R Advanced
Analytics for Hadoop:

= You cannot import Oracle tables with BINARY_FLOAT or BINARY_DOUBLE columns.
As a work-around, you can create a view that casts these columns to NUMBER.

= All column names must be in upper case.

Scenario for Using Oracle R Advanced Analytics for Hadoop with Oracle R Enterprise

The following scenario may help you identify opportunities for using Oracle R
Advanced Analytics for Hadoop with Oracle R Enterprise.

8-8 Oracle Big Data Connectors User's Guide

Analytic Functions in Oracle R Advanced Analytics for Hadoop

Using Oracle R Advanced Analytics for Hadoop, you can look for files that you have
access to on HDFS and execute R calculations on data in one such file. You can also
upload data stored in text files on your local file system into HDFS for calculations,
schedule an R script for execution on the Hadoop cluster using DBMS_SCHEDULER, and
download the results into a local file.

Using Oracle R Enterprise, you can open the R interface and connect to Oracle
Database to work on the tables and views that are visible based on your database
privileges. You can filter out rows, add derived columns, project new columns, and
perform visual and statistical analysis.

Again using Oracle R Advanced Analytics for Hadoop, you might deploy a
MapReduce job on Hadoop for CPU-intensive calculations written in R. The
calculation can use data stored in HDFS or, with Oracle R Enterprise, in an Oracle
database. You can return the output of the calculation to an Oracle database and to the
R console for visualization or additional processing.

Analytic Functions in Oracle R Advanced Analytics for Hadoop

Table 8-1 describes the analytic functions. For more information, use R Help.

Table 8—1 Descriptions of the Analytic Functions

Function Description

orch.evaluate Evaluates a fit generated by orch. Imf. This information can be
helpful when you are tuning the model parameters.

orch.export.fit Exports a model (W and H factor matrices) to the specified
destination for orch.1mf.jellyfish or orch.nmf. It is not used
for orch.mahout . 1lmf.als.

orch.lm Fits a linear model using tall-and-skinny QR (TSQR) factorization
and parallel distribution. The function computes the same
statistical parameters as the Oracle R Enterprise ore. 1m function.

orch.lmf Fits a low rank matrix factorization model using either the
jellyfish algorithm or the Mahout alternating least squares with
weighted regularization (ALS-WR) algorithm.

orch.neural Provides a neural network to model complex, nonlinear
relationships between inputs and outputs, or to find patterns in
the data.

orch.nmf Provides the main entry point to create a nonnegative matrix

factorization model using the jellyfish algorithm. This function
can work on much larger data sets than the R NMF package,
because the input does not need to fit into memory.

orch.nmf .NMFalgo Plugs in to the R NMF package framework as a custom algorithm.
This function is used for benchmark testing.

orch.recommend Computes the top 7 items to be recommended for each user that
has predicted ratings based on the input orch.mahout . lmf.asl
model.

predict.orch.lm Predicts future results based on the fit calculated by orch. 1m.

print.orch.1lm Prints a model returned by the orch. Imf function.

print.summary.orch.lm Prints a summary of the fit calculated by orch. Im.

summary.orch.lm Prepares a summary of the fit calculated by orch. 1m.

Using Oracle R Advanced Analytics for Hadoop 8-9

ORCH mapred.config Class

ORCH mapred.config Class

The hadoop . exec and hadoop. run functions have an optional argument, config, for
configuring the resultant MapReduce job. This argument is an instance of the
mapred.config class.

The mapred. config class has these slots:

hdfs.access
Set to TRUE to allow access to the HDFS. * functions in the mappers, reducers, and
combiners, or set to FALSE to restrict access (default).

job.name
A descriptive name for the job so that you can monitor its progress more easily.

map.input
A mapper input data-type keyword: data. frame, list, or vector (default).

map.output

A sample R data frame object that defines the output structure of data from the
mappers. It is required only if the mappers change the input data format. Then the
reducers require a sample data frame to parse the input stream of data generated by
the mappers correctly.

If the mappers output exactly the same records as they receive, then you can omit this
option.

map.split
The number of rows that your mapper function receives from a mapper.

= 0sends all rows given by Hadoop to a specific mapper to your mapper function.
Use this setting only if you are sure that the chunk of data for each mapper can fit
into R memory. If it does not, then the R process will fail with a memory allocation
error.

= 1sends one row only to the mapper at a time (Default). You can improve the
performance of a mapper by increasing this value, which decreases the number of
invocations of your mapper function. This is particularly important for small
functions.

= nsends a minimum of # rows to the mapper at a time. In this syntax, n is an
integer greater than 1. Some algorithms require a minimum number of rows to
function.

map.tasks

The number of mappers to run. Specify 1 to run the mappers sequentially; specify a
larger integer to run the mappers in parallel. If you do not specify a value, then the
number of mappers is determined by the capacity of the cluster, the workload, and the
Hadoop configuration.

map.valkey
Set to TRUE to duplicate the keys as data values for the mapper, or FALSE to use the
keys only as keys (default).

min.split.size

Controls the lower boundary for splitting HDFS files before sending them to the
mappers. This option reflects the value of the Hadoop mapred.min.split.size option
and is set in bytes.

8-10 Oracle Big Data Connectors User's Guide

Examples and Demos of Oracle R Advanced Analytics for Hadoop

reduce.input
A reducer input data type keyword: data. frame or 1ist (default).

reduce.output
A sample R data frame object that defines the output structure of data from the
reducers. This is optional parameter.

The sample data frame is used to generate metadata for the output HDFS objects. It
reduces the job execution time by eliminating the sampling and parsing step. It also
results in a better output data format, because you can specify column names and
other metadata. If you do not specify a sample data frame, then the output HDEFS files
are sampled and the metadata is generated automatically.

reduce.split

The number of data values given simultaneously to the reducer. See the values for
map . split. The reducer expects to receive all values simultaneously, so you must
handle partial data sets in the reducer if you set reduce. split to a value other than 0
(zero).

reduce.tasks

The number of reducers to run. Specify 1 to run the reducers sequentially; specify a
larger integer to run the reducers in parallel. If you do not specify a value, then the
number of reducers is determined by the capacity of the cluster, the workload, and the
Hadoop configuration.

reduce.valkey
Set to TRUE to duplicate the keys as data values for the reducer, or FALSE to use the
keys only as keys (default).

verbose
Set to TRUE to generate diagnostic information, or FALSE otherwise.

Examples and Demos of Oracle R Advanced Analytics for Hadoop

The ORCH package includes sample code to help you learn to adapt your R programs to
run on a Hadoop cluster using Oracle R Advanced Analytics for Hadoop. This topic
describes these examples and demonstrations.

= Using the Demos
s Using the Examples

Using the Demos

Oracle R Advanced Analytics for Hadoop provides an extensive set of demos.
Instructions for running them are included in the following descriptions.

If an error occurs, then exit from R without saving the workspace image and start a
new session. You should also delete the temporary files created in both the local file
system and the HDFS file system:

rm -r /tmp/orch*
hadoop fs -rm -r /tmp/orch*

Demo R Programs

hdfs_cpmv.R
Demonstrates copying, moving, and deleting HDFS files and directories.

Using Oracle R Advanced Analytics for Hadoop 8-11

Examples and Demos of Oracle R Advanced Analytics for Hadoop

This program uses the following ORCH functions:

hdfs.cd
hdfs.cp
hdfs.exists
hdfs.1ls
hdfs.mkdir
hdfs.mv
hdfs.put
hdfs.pwd
hdfs.rmdir
hdfs.root
hdfs.setroot

To run this demo, use the following command:
R> demo ("hdfs_cpmv", package="ORCH")
hdfs_datatrans.R

Demonstrates data transfers between HDFS and the local file system, and between
HDEFS and an Oracle database.

Note: This demo requires that Oracle R Enterprise client is installed
on Oracle Big Data Appliance, and Oracle R Enterprise server is
installed on the Oracle Database host.

You must connect to Oracle Database using both Oracle R Advanced
Analytics for Hadoop and Oracle R Enterprise to run this demo to
completion. See orch.connect on page 9-41 and ore. connect help.

This program uses the following ORCH functions:

hdfs.cd
hdfs.describe
hdfs.download
hdfs.get
hdfs.pull
hdfs.pwd
hdfs.rm
hdfs.root
hdfs.setroot
hdfs.size
hdfs.upload
orch.connected
ore.drop!
ore.is.connected!

To run this demo, use the following commands, replacing the parameters shown here
for ore.connect and orch. connect with those appropriate for your Oracle database:

R> ore.connect ("RQUSER", "orcl", "localhost", "welcomel")
Loading required package: ROracle
Loading required package: DBI
R> orch.connect("localhost", "RQUSER", "orcl", "welcomel", secure=F)
Connecting ORCH to RDBMS via [sgoop]
Host: localhost
Port: 1521

1 Use the R help function for usage information

8-12 Oracle Big Data Connectors User's Guide

Examples and Demos of Oracle R Advanced Analytics for Hadoop

SID: orcl
User: RQUSER
Connected.
[1] TRUE
R> demo("hdfs_datatrans", package="ORCH")

hdfs_dir.R
Demonstrates the use of functions related to HDFS directories.

This program uses the following ORCH functions:

hdfs.cd
hdfs.1ls
hdfs.mkdir
hdfs.pwd
hdfs.rmdir
hdfs.root
hdfs.setroot

To run this demo, use the following command:

R> demo("hdfs_dir", package="ORCH")

hdfs_putget.R
Demonstrates how to transfer data between an R data frame and HDFS.

This program uses the following ORCH functions:

hdfs.attach
hdfs.describe
hdfs.exists
hdfs.get
hdfs.put
hdfs.pwd
hdfs.rm
hdfs.root
hdfs.sample
hdfs.setroot

To run this demo, use the following command:

R> demo ("hdfs_putget", package="ORCH")

hive_aggregate.R

Moves a selection of the Iris data set into Hive and performs these aggregations for

each species: summary, mean, minimum, maximum, standard deviation, median, and
interquartile range (IQR).

This program uses the following ORCH functions to set up a Hive table. These functions
are used in all of the Hive demo programs and are documented in R Help:

ore.attach

ore.connect

ore.push

To run this demo, use the following command:

R> demo ("hive_aggregate", package="ORCH")

hive_analysis.R
Demonstrates basic analysis and data processing operations.

To run this demo, use the following command:

R> demo ("hive_analysis", package="ORCH")

Using Oracle R Advanced Analytics for Hadoop 8-13

Examples and Demos of Oracle R Advanced Analytics for Hadoop

hive_basic.R

Using basic R functions, this demo obtains information about a Hive table, including
the number of rows (nrow), the number of columns (1ength), the first five rows (head),
the class and data type of a column (class and is. *), and the number of characters in
each column value (nchar).

To run this program, use the following command:

R> demo ("hive_basic", package="ORCH")

hive_binning.R

Creates bins in Hive based on petal size in the Iris data set.
To run this program, use the following command:

R> demo ("hive_binning", package="ORCH")
hive_columnfns.R

Uses the Iris data set to show the use of several column functions including min, max,
sd, mean, fivenum, var, IQR, quantile, log, 1log2, 1ogl0, abs, and sqrt.

To run this program, use the following command:
R> demo ("hive_columnfns", package="ORCH")
hive_nulls.R

Demonstrates the differences between handling nulls in R and Hive, using the
ATRQUALITY data set.

This program uses the following ORCH functions, which are documented in R Help:

ore.attach
ore.connect
ore.na.extract
ore.push

To run this program, use the following command:

R> demo ("hive_nulls", package="ORCH")

hive_pushpull.R
Shows processing of the Iris data set split between Hive and the client R desktop.

This program uses the following ORCH functions, which are documented in R Help:

ore.attach
ore.connect
ore.pull
ore.push

To run this program, use the following command:

R> demo ("hive_pushpull", package="ORCH")

hive_sequencefile.R
Shows how to create and use Hive tables stored as sequence files, using the cars data
set.

This program uses the following ORCH functions, which are documented in R Help:

ore.attach
ore.connect
ore.create
ore.exec
ore.sync

8-14 Oracle Big Data Connectors User's Guide

Examples and Demos of Oracle R Advanced Analytics for Hadoop

ore.drop

To run this program, use the following command:

R> demo ("hive_sequencefile", package="ORCH")

mapred_basic.R
Provides a simple example of mappers and reducers written in R. It uses the cars data
set.

This program uses the following ORCH functions:

hadoop.run
hdfs.get
hdfs.put
hdfs.rm
hdfs.setroot
orch.keyval

To run this program, use the following command:

R> demo ("mapred_basic", package="ORCH")

mapred_modelbuild.R
Runs a mapper and a reducer in a parallel model build, saves plots in HDFS in
parallel, and displays the graphs. It uses the iris data set.

This program uses the following ORCH functions:

hadoop.run
hdfs.download
hdfs.exists
hdfs.get
hdfs.id
hdfs.put
hdfs.rm
hdfs.rmdir
hdfs.root
hdfs.setroot
hdfs.upload
orch.export
orch.pack
orch.unpack

To run this program, use the following command:

R> demo ("mapred_modelbuild", package="ORCH")

orch_Im.R
Fits a linear model using the orch. 1m algorithm and compares it with the R 1m
algorithm. It uses the iris data set.

This program uses the following ORCH functions:

hdfs.cd
hdfs.get
hdfs.put
hdfs.pwd
hdfs.rm
hdfs.root
hdfs.setroot
orch.lm!
predict.orch.lm!

Using Oracle R Advanced Analytics for Hadoop 8-15

Examples and Demos of Oracle R Advanced Analytics for Hadoop

To run this program, use the following command:

R> demo("orch_Im", package="ORCH")

orch_Imf_jellyfish.R

Fits a low rank matrix factorization model using the jellyfish algorithm.

This program uses the following ORCH functions:

hdfs.cd
hdfs.get
hdfs.mkdir
hdfs.pwd
hdfs.rmdir
hdfs.root
hdfs.setroot
orch.evaluate!
orch.export.fit!
orch.lmf!

To run this program, use the following command:

R> demo ("orch_lmf_jellyfish", package="ORCH")

orch_Imf_mahout_als.R

Fits a low rank matrix factorization model using the Mahout ALS-WR algorithm.

This program uses the following ORCH functions:

hdfs.cd
hdfs.mkdir
hdfs.pwd
hdfs.rmdir
hdfs.root
orch.evaluate!
orch.lmf?!
orch.recommend’

To run this program, use the following command:

R> demo ("orch_lmf_mahout_als", package="ORCH")

orch_neural.R

Builds a model using the Oracle R Advanced Analytics for Hadoop neural network

algorithm. It uses the iris data set.
This program uses the following ORCH functions:

hdfs.cd
hdfs.put
hdfs.pwd
hdfs.rm
hdfs.root
hdfs.sample
hdfs.setroot
orch.neurall

To run this program, use the following command:

R> demo ("orch_neural", package="ORCH")

8-16 Oracle Big Data Connectors User's Guide

Examples and Demos of Oracle R Advanced Analytics for Hadoop

orch_nmf.R
Demonstrates the integration of the orch.nmf function with the framework of the R
NMF package to create a nonnegative matrix factorization model.

This demo uses the Golub data set provided with the NMF package.
This program uses the following ORCH functions:

hdfs.cd
hdfs.mkdir
hdfs.pwd
hdfs.rmdir
hdfs.root
hdfs.setroot
orch.nmf . NMFalgo®

This program requires several R packages that you may not have already installed:
NMF, Biobase, BiocGenerics, and RColorBrewer. Instructions for installing them are
provided here.

Caution: When asked whether you want to update the dependent
packages, always respond Update/None. The installed R packages are
the supported versions. If you update them, then the Oracle Big Data
Appliance software checks fail, which causes problems during routine
maintenance. Always run the bdachecksw utility after installing new
packages. See the bdachecksw utility in the Oracle Big Data Appliance
Owner’s Guide.

If you are using a Hadoop client, then install the packages on the
client instead of Oracle Big Data Appliance.

To install NMF:

1. Download NMF from the CRAN archives at
http://cran.r-project.org/src/contrib/Archive/NMF/NMF_0.5.06.tar.gz

2. Install NMF using a standard installation method:

R> install.packages("/full_path/NMF_0.5.06.tar.gz", REPOS=null)

To install Biobase and BiocGenerics from the BioConductor project:
1. Source in the biocLite package:

R> source("http://bioconductor.org/biocLite.R")

2. Install the Biobase package:

R> biocLite("Biobase")

3. Install the BiocGenerics package:

R> biocLite("BiocGenerics")

To install RColorBrewer:
= Use a standard method of installing a package from CRAN:

R> install.packages ("RColorBrewer")

To run the orch_nmf demo:

Using Oracle R Advanced Analytics for Hadoop 8-17

Examples and Demos of Oracle R Advanced Analytics for Hadoop

1. Load the required packages, if they are not already loaded in this session:

R> library("NMF")

R> library("Biobase")

R> library("BiocGenerics")
R> library("RColorBrewer")

2. Run the demo:

R> demo ("orch_nmf", package="ORCH")

demo-bagged.clust.R

Provides an example of bagged clustering using randomly generated values. The
mappers perform k-means clustering analysis on a subset of the data and generate
centroids for the reducers. The reducers combine the centroids into a hierarchical
cluster and store the hclust object in HDFS.

This program uses the following ORCH functions:

hadoop.exec
hdfs.put
is.hdfs.id
orch.export
orch.keyval
orch.pack
orch.unpack

To run this program, ensure that root is set to /tmp, and then source the file:

R> hdfs.setroot ("/tmp")
[1] " /tmp n
R> source("/usr/lib64/R/library/ORCHcore/demos/demo-bagged.clust.R")

Call:
c¢("hclust", "d", "single")

Cluster method : single
Distance : euclidean
Number of objects: 6

demo-kmeans.R
Performs k-means clustering.

This program uses the following ORCH functions:

hadoop.exec
hdfs.get
orch.export
orch.keyval
orch.pack
orch.unpack

To run this program, ensure that root is set to /tmp, and then source the file:

R> hdfs.setroot ("/tmp")
[1] "/tmp"
R> source("/usr/lib64/R/library/ORCHcore/demos/demo-kmeans.R")
centers
X Yy
1 0.3094056 1.32792762
2 1.7374920 -0.06730981
3 -0.6271576 -1.20558920
4 0.2668979 -0.98279426

8-18 Oracle Big Data Connectors User's Guide

Examples and Demos of Oracle R Advanced Analytics for Hadoop

5 0.4961453 1.11632868
6 -1.7328809 -1.26335598
removing NaNs if any
final centroids

X v
0.666782828 2.36620810
1.658441962 0.33922811
-0.627157587 -1.20558920
.007995672 -0.03166983
1.334578589 1.41213532
-1.732880933 -1.26335598

o Ul i W N
|
o

Using the Examples

The examples show how you use the Oracle R Advanced Analytics for Hadoop APIL
You can view them in a text editor after extracting them from the installation archive
files. They are located in the ORCH2.1.0/ORCHcore/examples directory. You can run
the examples as shown in the following descriptions.

Example R Programs

example-filter1.R

Shows how to use key-value pairs. The mapper function selects cars with a distance
value greater than 30 from the cars data set, and the reducer function calculates the
mean distance for each speed.

This program uses the following ORCH functions:

hadoop.run
hdfs.get
hdfs.put
orch.keyval

To run this program, ensure that root is set to /tmp, and then source the file:

R> hdfs.setroot ("/tmp")
[1] "/tmp"
R> source("/usr/lib64/R/1library/ORCHcore/examples/example-filterl.R")
Running cars filtering and mean example #1:
vall val2
10 34.00000
13 38.00000
14 58.66667
15 54.00000
16 36.00000
17 40.66667
18 64.50000
19 50.00000
20 50.40000
0 22 66.00000
11 23 54.00000
12 24 93.75000
13 25 85.00000

= WOW oo J o Ul W

example-filter2.R

Shows how to use values only. The mapper function selects cars with a distance
greater than 30 and a speed greater than 14 from the cars data set, and the reducer
function calculates the mean speed and distance as one value pair.

This program uses the following ORCH functions:

Using Oracle R Advanced Analytics for Hadoop 8-19

Examples and Demos of Oracle R Advanced Analytics for Hadoop

hadoop.run
hdfs.get
hdfs.put
orch.keyval

To run this program, ensure that root is set to /tmp, and then source the file:

R> hdfs.setroot ("/tmp")
[1] "/tmp"
R> source("/usr/1lib64/R/library/ORCHcore/examples/example-filter2.R")
Running cars filtering and mean example #2:
vall wval2
1 59.52 19.72

example-filter3.R
Shows how to load a local file into HDFS. The mapper and reducer functions are the
same as example-filter2.R.

This program uses the following ORCH functions:

hadoop.run
hdfs.download
hdfs.upload
orch.keyval

To run this program, ensure that root is set to /tmp, and then source the file:

R> hdfs.setroot ("/tmp")

[1] "/tmp"

R> source("/usr/1lib64/R/library/ORCHcore/examples/example-filter3.R")
Running cars filtering and mean example #3:

[1] "\t59.52,19.72"

example-group.apply.R

Shows how to build a parallel model and generate a graph. The mapper partitions the
data based on the petal lengths in the iris data set, and the reducer uses basic R
statistics and graphics functions to fit the data into a linear model and plot a graph.

This program uses the following ORCH functions:

hadoop.run
hdfs.download
hdfs.exists
hdfs.get
hdfs.id
hdfs.mkdir
hdfs.put
hdfs.rmdir
hdfs.upload
orch.pack
orch.export
orch.unpack

To run this program, ensure that root is set to /tmp, and then source the file:

R> hdfs.setroot ("/tmp")

[1] "/tmp"

R> source("/usr/lib64/R/library/ORCHcore/examples/example-group.apply.R")
Running groupapply example.

[[1]]

[[1]]$predict

8-20 Oracle Big Data Connectors User's Guide

Examples and Demos of Oracle R Advanced Analytics for Hadoop

[3]
[[3]]$predict
2 210 3 4 5 6 7 8
4.883662 5.130816 4.854156 5.163097 4.109921 4.915944 4.233498 4.886437
9 10 11 12 13 14 15 16
4.789593 4.545214 4.136653 4.574721 4.945451 4.359849 4.013077 4.730579
17 18 19 20 21 22 23 24
4.827423 4.480651 4.792367 4.386581 4.666016 5.007239 5.227660 4.607002
25 26 27 28 29 30 31 32
4.701072 4.236272 4.701072 5.039521 4.604228 4.171709 4.109921 4.015851
33 34 35 36 37 38 39 40
4.574721 4.201216 4.171709 4.139428 4.233498 4.542439 4.233498 5.733065
41 42 43 44 45 46 47 48
4.859705 5.851093 5.074577 5.574432 6.160034 4.115470 5.692460 5.321730
49 50 51 52 53 54 55 56
6.289160 5.386293 5.230435 5.665728 4.891986 5.330054 5.606714 5.198153
57 58 59 60 61 62 63 64
6.315892 6.409962 4.607002 5.915656 4.830198 6.127753 5.074577 5.603939
65 66 67 68 69 70 71 72
5.630671 5.012788 4.951000 5.418574 5.442532 5.848318 6.251329 5.512644
73 74 75 76 77 78 79 80
4.792367 4.574721 6.409962 5.638995 5.136365 4.889212 5.727516 5.886149
81 82 83 84 85 86 87 88
5.915656 4.859705 5.853867 5.980218 5.792079 5.168646 5.386293 5.483137
89
4.827423

[[3]]1$pngfile
[1] "/user/oracle/pngfiles/3"

[1] "/tmp/orché6e295a5a5da9"

This program generates three graphics files in the /tmp directory. Figure 8-1 shows
the last one.

Using Oracle R Advanced Analytics for Hadoop 8-21

Examples and Demos of Oracle R Advanced Analytics for Hadoop

Figure 8—-1 Example example-group.apply.R Output in fit-3.png

Residuals vs Leverage
0.5
or4
o -
™] &2
% s} o o]
E o o 0 oo = o o
a @98 g 0% o o o i
o P
o [} - o
& %% 90 ° =
R o8 S , ©
o il o © o
8 gy © o 8@ o o
w f_— 0138 oo o @ o =]
[e
Q
o [}
O
2 Cook's distance
I T | T T
0.00 0.02 0.04 0.06 0.08
Leverage
Im(Petal.Length ~ Sepal.Length + Petal Width)

example-kmeans.R
Defines a k-means clustering function and generates random points for a clustering
test. The results are printed or graphed.

This program uses the following ORCH functions:

hadoop.exec
hdfs.get
hdfs.put
orch.export

To run this program, ensure that root is set to /tmp, and then source the file:

R> hdfs.setroot ("/tmp")
[1] "/tmp"
R> source("/usr/lib64/R/library/ORCHcore/examples/example-kmeans.R")
Running k-means example.
vall val2
1.005255389 1.9247858
0.008390976 2.5178661
1.999845464 0.4918541
0.480725254 0.4872837
1.677254045 2.6600670

U Ww N

example-Im.R
Shows how to define multiple mappers and one reducer that merges all results. The
program calculates a linear regression using the iris data set.

This program uses the following ORCH functions:

hadoop.run
hdfs.get
hdfs.put

8-22 Oracle Big Data Connectors User's Guide

Examples and Demos of Oracle R Advanced Analytics for Hadoop

orch.export
orch.pack
orch.unpack

To run this program, ensure that root is set to /tmp, and then source the file:

R> hdfs.setroot ("/tmp")

[1] "/tmp"

R> source("/usr/lib64/R/library/ORCHcore/examples/example-1m.R")
Running linear model example.

Model rank 3, yy 3.0233000000E+02, nRows 150

Model coefficients

-0.2456051 0.2040508 0.5355216

example-logreg.R
Performs a one-dimensional, logistic regression on the cars data set.

This program uses the following ORCH functions:

hadoop.run
hdfs.put
orch.export

To run this program, ensure that root is set to /tmp, and then source the file:

R> hdfs.setroot ("/tmp")

[1] "/tmp"

R> source("/usr/1ib64/R/library/ORCHcore/examples/example-logreg.R")
Running logistic regression.

[1] 1924.1

example-map.df.R

Shows how to run the mapper with an unlimited number of records input
simultaneously as a data frame. The mapper selects cars with a distance greater than
30 from the cars data set and calculates the mean distance. The reducer merges the
results.

This program uses the following ORCH functions:

hadoop.run
hdfs.get
hdfs.put

To run this program, ensure that root is set to /tmp, and then source the file:

R> hdfs.setroot ("/tmp")
[1] "/tmp"
R> source("/usr/lib64/R/1library/ORCHcore/examples/example-map.df.R"))
Running example of data.frame mapper input:
vall val2
1 17.66667 50.16667
2 13.25000 47.25000

example-map.list.R

Shows how to run the mapper with an unlimited number of records input
simultaneously as a list. The mapper selects cars with a distance greater than 30 from
the cars data set and calculates the mean distance. The reducer merges the results.

This program uses the following ORCH functions:

hadoop.run
hdfs.get
hdfs.put

Using Oracle R Advanced Analytics for Hadoop 8-23

Examples and Demos of Oracle R Advanced Analytics for Hadoop

To run this program, ensure that root is set to /tmp, and then source the file:

R> hdfs.setroot ("/tmp")
[1] "/tmp"
R> source("/usr/lib64/R/library/ORCHcore/examples/example-map.list.R"
Running example of list mapper input:
vall val2
1 15.9 49

example-model.plot.R

Shows how to create models and graphs using HDFS. The mapper provides key-value
pairs from the iris data set to the reducer. The reducer creates a linear model from
data extracted from the data set, plots the results, and saves them in three HDFS files.

This program uses the following ORCH functions:

hadoop.run
hdfs.download
hdfs.exists
hdfs.get
hdfs.id
hdfs.mkdir
hdfs.put
hdfs.rmdir
hdfs.upload
orch.export
orch.pack

To run this program, ensure that root is set to /tmp, and then source the file:

R> hdfs.setroot ("/tmp")

[1] "/tmp"

R> source("/usr/lib64/R/library/ORCHcore/examples/example-model.plot.R"
Running model building and graph example.

[[11]

[[1]]$predict

[[3]]$predict
2 210 3 4 5 6 7 8
5.423893 4.955698 5.938086 5.302979 5.517894 6.302640 4.264954 6.032087
9 10 11 12 13 14 15 16
5.594622 6.080090 5.483347 5.393163 5.719353 4.900061 5.042065 5.462257
17 18 19 20 21 22 23 24
5.448801 6.392824 6.410097 5.032427 5.826811 4.827150 6.358277 5.302979
25 26 27 28 29 30 31 32
5.646442 5.959176 5.230068 5.157157 5.427710 5.924630 6.122271 6.504099
33 34 35 36 37 38 39 40
5.444983 5.251159 5.088064 6.410097 5.406619 5.375890 5.084247 5.792264
41 42 43 44 45 46 47 48
5.698262 5.826811 4.955698 5.753900 5.715536 5.680989 5.320252 5.483347
49 50
5.316435 5.011336

[[3]1]1$pngfile

[1] "/user/oracle/pngfiles/virginica"

[1] "/tmp/orch6e29190del60"

8-24 Oracle Big Data Connectors User's Guide

Examples and Demos of Oracle R Advanced Analytics for Hadoop

The program generates three graphics files. Figure 8-2 shows the last one.

Figure 8-2 Example example-model.plot.R Output in fit-virginica.png

Residuals vs Leverage
-]os
o2
™]
o1g 350
5 ©
o [+
w T ° 2 @
m (=] [o) .
S g0 o R
T T
H o o 0 o
5 - =]
T o o o o
N o © @
g L= a o o
e “ o
507 o
g o “ Q
Co g
o
E\I.l —
[0.5
o2 Cook's distance =
T T T - T
0.00 0.05 010 0.15
Leverage
ImiPetal.Length ~ Sepal Length + Petal Width)

example-model.prep.R

Shows how to distribute data across several map tasks. The mapper generates a data
frame from a slice of input data from the iris data set. The reducer merges the data
frames into one output data set.

This program uses the following ORCH functions:

hadoop.exec
hdfs.get
hdfs.put
orch.export
orch.keyvals

To run this program, ensure that root is set to /tmp, and then source the file:

R> hdfs.setroot ("/tmp")

[1] "/tmp"

R> source("/usr/1lib64/R/library/ORCHcore/examples/example-model.prep.R")
vl v2 v3 v

1 5.1 4.90 4.055200 0.33647224

2 4.9 4.20 4.055200 0.33647224

3 4.7 4.16 3.669297 0.26236426

299 6.2 18.36 221.406416 1.68639895
300 5.9 15.30 164.021907 1.62924054

Using Oracle R Advanced Analytics for Hadoop 8-25

Examples and Demos of Oracle R Advanced Analytics for Hadoop

example-rim.R

Shows how to convert a simple R program into one that can run as a MapReduce job
on a Hadoop cluster. In this example, the program calculates and graphs a linear
model on the cars data set using basic R functions.

This program uses the following ORCH functions:

hadoop.run
orch.keyvals
orch.unpack

To run this program, ensure that root is set to /tmp, and then source the file:

R> hdfs.setroot ("/tmp")

[1] "/tmp"

R> source("/usr/lib64/R/library/ORCHcore/examples/example-rlm.R"
[1] "--- Client Im:"

Call:
Im(formula = speed ~ dist, data = cars)

Residuals:
Min 10 Median 30 Max
-7.5293 -2.1550 0.3615 2.4377 6.4179

Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) 8.28391 0.87438 9.474 1.44e-12 **x*
dist 0.16557 0.01749 9.464 1.49e-12 ***
Signif. codes: 0 '***' (0.001 '**' 0.01 '*' 0.05 '." 0.1 ' "1
Residual standard error: 3.156 on 48 degrees of freedom
Multiple R-squared: 0.6511, Adjusted R-squared: 0.6438
F-statistic: 89.57 on 1 and 48 DF, p-value: 1.49e-12

Enter Ctrl+C to get the R prompt, and then close the graphics window:

R> dev.off()

Figure 8-3 shows the four graphs generated by the program.

8-26 Oracle Big Data Connectors User's Guide

Examples and Demos of Oracle R Advanced Analytics for Hadoop

Figure 8-3 Example-rim.R Output

Residuals vs Fitted
039
e o
= OO 8 % © o
> _ O b_ﬁ"Q—__
2 °q . 0%%e o2
i o s} a
o -~ o a o]
v Jo o (8]]
oz
230
T T T
10 15 20
Fitted values
Normal Q-Q
wm
= ol
=
2
w —
o
T o
L
T
[1+] |
hs}
=
] ol
& b
-2 -1 0 1
Theoretical Quantiles

JIStandardized residuals

Standardized residuals

05 10 158

0.0

Scale-Location
o]

o2 el
T8 g 0
I [s] #BY oo [
L L

o
_ 00 oo® o

o&oooo 2

o

T T T I
10 15 20 25

Fitted values

Residuals vs Leverage

Cooﬁﬁﬁdbtggu;-""d')
| | I | |

0.00 0.05 010 015 0.20

Leverage

example-split.map.R

Shows how to split the data in the mapper. The first job runs the mapper in list mode
and splits the list in the mapper. The second job splits a data frame in the mapper. Both

jobs use the cars data set.

This program uses the following ORCH functions:

hadoop.run
hdfs.get
hdfs.put
orch.keyval

To run this program, ensure that root is set to /tmp, and then source the file:

R> hdfs.setroot ("/tmp")
[l} "/tmp"

R> source("/usr/lib64/R/library/ORCHcore/examples/example-split.map.R")

Running example of list splitting in mapper

key count splits
1 NA 50 6

Running example of data.frame splitting in mapper

key count splits
1 NA 50 8

example-split.reduce.R

Shows how to split the data from the cars data set in the reducer.

This program uses the following ORCH functions:

Using Oracle R Advanced Analytics for Hadoop 8-27

Examples and Demos of Oracle R Advanced Analytics for Hadoop

hadoop.run
hdfs.get
hdfs.put
orch.keyval

To run this program, ensure that root is set to /tmp, and then source the file:

R> hdfs.setroot ("/tmp")

[1] "/tmp"

R> source("/usr/lib64/R/library/ORCHcore/examples/example-split.reduce.R")
Running example of data.frame reducer input

~C key count

1 1 9
2 1 9
3 1 9
20 1 9
21 1 5

example-sum.R
Shows how to perform a sum operation in a MapReduce job. The first job sums a
vector of numeric values, and the second job sums all columns of a data frame.

This program uses the following ORCH functions:

hadoop.run
orch.keyval

To run this program, ensure that root is set to /tmp, and then source the file:

R> hdfs.setroot ("/tmp")

[1] "/tmp"

R> source("/usr/lib64/R/library/ORCHcore/examples/example-sum.R"
val2

1 6
val2 val3

1 770 2149

example-teragen.matrix.R
Shows how to generate large data sets in a matrix for testing programs in Hadoop. The
mappers generate samples of random data, and the reducers merge them.

This program uses the following ORCH functions:

hadoop.run
hdfs.put
orch.export
orch.keyvals

To run this program, ensure that root is set to /tmp, and then source the file. The
program runs without printing any output.

R> hdfs.setroot ("/tmp")

[1] "/tmp"

R> source("/usr/lib64/R/library/ORCHcore/examples/example-teragem.matrix.R"
Running TeraGen-PCA example:

R>

8-28 Oracle Big Data Connectors User's Guide

Examples and Demos of Oracle R Advanced Analytics for Hadoop

example-teragen.xy.R
Shows how to generate large data sets in a data frame for testing programs in Hadoop.
The mappers generate samples of random data, and the reducers merge them.

This program uses the following ORCH functions:

hadoop.run
hdfs.put
orch.export
orch.keyvals

To run this program, ensure that root is set to /tmp, and then source the file. The
program runs without printing any output.

R> hdfs.setroot ("/tmp")

[1] "/tmp"

R> source("/usr/1lib64/R/library/ORCHcore/examples/example-teragen2.xy.R")
Running TeraGen2 example.R>

example-teragen2.xy.R
Shows how to generate large data sets in a data frame for testing programs in Hadoop.
One mapper generates small samples of random data, and the reducers merge them.

This program uses the following ORCH functions:

hadoop.run
hdfs.put
orch.export
orch.keyvals

To run this program, ensure that root is set to /tmp, and then source the file. The
program runs without printing any output.

R> hdfs.setroot ("/tmp")

[1] "/tmp"

R> source("/usr/1lib64/R/library/ORCHcore/examples/example-teragem2.xy.R"
Running TeraGen2 example.

R>

example-terasort.R
Provides an example of a TeraSort job on a set of randomly generated values.

This program uses the following ORCH function:

hadoop.run

To run this program, ensure that root is set to /tmp, and then source the file:

R> hdfs.setroot ("/tmp")
[1] "/tmp"

R> source("/usr/lib64/R/library/ORCHcore/examples/example-terasort.R"
Running TeraSort example:
vall

-0.001467344
-0.004471376
-0.005928546
.007001193
-0.010587280
-0.011636190

o Ul W N
|
o

Using Oracle R Advanced Analytics for Hadoop 8-29

Security Notes for Oracle R Advanced Analytics for Hadoop

Security Notes for Oracle R Advanced Analytics for Hadoop

Oracle R Advanced Analytics for Hadoop can invoke the Sqoop utility to connect to
Oracle Database either to extract data or to store results.

Sqoop is a command-line utility for Hadoop that imports and exports data between
HDFS or Hive and structured databases. The name Sqoop comes from "SQL to
Hadoop." The following explains how Oracle R Advanced Analytics for Hadoop stores
a database user password and sends it to Sqoop.

Oracle R Advanced Analytics for Hadoop stores a user password only when the user
establishes the database connection in a mode that does not require reentering the
password each time. The password is stored encrypted in memory. See orch. connect
on page 9-41.

Oracle R Advanced Analytics for Hadoop generates a configuration file for Sqoop and
uses it to invoke Sqoop locally. The file contains the user's database password obtained
by either prompting the user or from the encrypted in-memory representation. The file
has local user access permissions only. The file is created, the permissions are set
explicitly, and then the file is open for writing and filled with data.

Sqoop uses the configuration file to generate custom JAR files dynamically for the
specific database job and passes the JAR files to the Hadoop client software. The
password is stored inside the compiled JAR file; it is not stored in plain text.

The JAR file is transferred to the Hadoop cluster over a network connection. The
network connection and the transfer protocol are specific to Hadoop, such as port
5900.

The configuration file is deleted after Sqoop finishes compiling its JAR files and starts
its own Hadoop jobs.

8-30 Oracle Big Data Connectors User's Guide

ORCH Library Reference

This chapter describes the function in the ORCH library. It contains the following
sections:

= Functions in Alphabetical Order
= Functions by Category

Functions in Alphabetical Order
Use R help for the ore functions for Apache Hive and the analytic functions:

R> help("function_name")

There are no Help (Rd) files for orch functions. They are described in this chapter.

as.ore
as.ore.character
as.ore.frame
as.ore.integer
as.ore.logical
as.ore.numeric
as.ore.vector
hadoop.exec
hadoop.run
hdfs.attach
hdfs.cd
hdfs.cp
hdfs.describe
hdfs.download
hdfs.exists
hdfs.get
hdfs.head
hdfs.id
hdfs.1ls
hdfs.mkdir
hdfs.mv
hdfs.parts
hdfs.pull
hdfs.push
hdfs.put
hdfs.pwd
hdfs.rm
hdfs.rmdir
hdfs.root
hdfs.sample
hdfs.setroot

ORCH Library Reference 9-1

Functions by Category

hdfs.size
hdfs.tail
hdfs.upload
is.hdfs.id
is.ore
is.ore.character
is.ore.frame
is.ore.integer
is.ore.logical
is.ore.numeric
is.ore.vector
ore.create
ore.drop
ore.get
ore.pull
ore.push
ore.recode
orch.connect
orch.connected
orch.dbcon
orch.dbg.lasterr
orch.dbg.off
orch.dbg.on
orch.dbg.output
orch.dbinfo
orch.disconnect
orch.dryrun
orch.evaluate
orch.export
orch.export.fit
orch.keyval
orch.keyvals
orch.lm
orch.lmf
orch.neural
orch.nmf
orch.nmf .NMFalgo
orch.pack
orch.reconnect
orch.temp.path
orch.unpack
orch.version
predict.orch.lm
print.orch.lm
print.summary.orch.lm
summary.orch.lm

Functions by Category
The functions are grouped into these categories:
= Making Connections
s Copying Data
= Exploring Files
s Writing MapReduce Functions
s Debugging Scripts
s Using Hive Data

9-2 Oracle Big Data Connectors User's Guide

Functions by Category

= Writing Analytical Functions

Making Connections

orch.
orch.
orch.
orch.
orch.
orch.

Copying Data

hdfs.
hdfs.
hdfs.
hdfs.

hdfs

hdfs

Exploring Files

hdfs.
hdfs.
hdfs.
hdfs.
hdfs.
hdfs.
.mkdir
hdfs.
hdfs.
hdfs.
hdfs.
hdfs.
.sample
hdfs.
hdfs.
hdfs.

hdfs

hdfs

connect
connected
dbcon
dbinfo
disconnect
reconnect

attach
cp
download
get

.mv
hdfs.
hdfs.

pull
push

.put
hdfs.
orch.
orch.
orch.

upload
export
pack

unpack

cd
describe
exists
head

id

1s

parts
pwd
rm
rmdir
root

setroot
size
tail

is.hdfs.id

orch

.temp.path

Writing MapReduce Functions

hadoop.exec
hadoop.run

orch
orch
orch

Debugging Scripts

orch
orch

.dryrun
.keyval
.keyvals

.dbg.lasterr
.dbg.off

ORCH Library Reference 9-3

Functions by Category

orch.dbg.on
orch.dbg.output
orch.version

Using Hive Data
See "ORE Functions for Hive" on page 8-3

Writing Analytical Functions
See "Analytic Functions in Oracle R Advanced Analytics for Hadoop" on page 8-9.

9-4 Oracle Big Data Connectors User's Guide

hadoop.exec

hadoop.exec

Usage

Arguments

Starts the Hadoop engine and sends the mapper, reducer, and combiner R functions
for execution. You must load the data into HDFS first.

hadoop.exec (
dfs.id,
mapper,
reducer,
combiner,
export,
init,
final,
job.name,
config)

dfs.id
The name of a file in HDFS containing data to be processed. The file name can include
a path that is either absolute or relative to the current path.

mapper
Name of a mapper function written in the R language.

reducer
Name of a reducer function written in the R language (optional).

combiner
Not supported in this release.

export
Names of exported R objects from your current R environment that are referenced by
any of the mapper, reducer, or combiner functions (optional).

init
A function that is executed once before the mapper function begins (optional).

final
A function that is executed once after the reducer function completes (optional).

job.name
A descriptive name that you can use to track the progress of the MapReduce job
instead of the automatically generated job name (optional).

config
Sets the configuration parameters for the MapReduce job (optional).

This argument is an instance of the mapred. config class, and thus it has this format:

config = new("mapred.config", paraml, param2,...)

See "ORCH mapred.config Class" on page 8-10 for a description of this class.

ORCH Library Reference 9-5

hadoop.exec

Usage Notes

Return Value

See Also

Example

Oracle R Advanced Analytics for Hadoop does not support mapper-only jobs. Use
orch.keyvals as a reducer body. See the example in orch.keyvals.

This function provides more control of the data flow than the hadoop . run function.
You must use hadoop . exec when chaining several mappers and reducers in a pipeline,
because the data does not leave HDFS. The results are stored in HDFS files.

Data object identifier in HDFS

hadoop . run on page 9-8, orch.dryrun on page 9-54, orch.keyvals on page 9-57

This sample script uses hdfs.attach to obtain the object identifier of a small, sample
data file in HDFS named ontime_R.

The MapReduce function counts the number of on-time flights arriving in the San
Francisco International Airport (SFO).

dfs <- hdfs.attach('ontime_R'")

res <- NULL
res <- hadoop.exec (
dfs,
mapper = function(key, ontime) {
if (key == 'SFO') {

keyval (key, ontime)
}
}
reducer = function(key, vals) {
sumAD <- 0
count <- 0
for (x in vals) {
if (!is.na(xSARRDELAY)) {sumAD <- sumAD + x$SARRDELAY; count <- count +
1}
}
res <- sumAD / count
keyval (key, res)
}
)
After the script runs, the res variable identifies the location of the results in an HDFS
file named /user/oracle/xq/orch3d0b8218:

R> res
[1] "/user/oracle/xqg/orch3d0b8218"
attr(,"dfs.1id")
[1] TRUE
R> print (hdfs.get(res))
vall val2
1 SFO 27.05804

This code fragment is extracted from example-kmeans.R. The export option identifies
the location of the ncenters generated data set, which is exported as an HDFS file. The
config options provide a MapReduce job name of k-means. 1, and the mapper output
format of a data frame.

9-6 Oracle Big Data Connectors User's Guide

hadoop.exec

mapf <- data.frame(key=0, vall=0, val2=0)
dfs.points <- hdfs.put (points)
dfs.centers <- hadoop.exec (
dfs.id = dfs.points,
mapper = function(k,v) {
keyval (sample(l:ncenters, 1), v)
I
reducer = function(k,vv) {
vv <- sapply(vv, unlist)
keyval (NULL, c(mean(vv[l,]), mean(vv[2,])))
b
export = orch.export (ncenters),
config = new("mapred.config",
job.name = "k-means.l",
map.output = mapf)

ORCH Library Reference 9-7

hadoop.run

hadoop.run
Starts the Hadoop engine and sends the mapper, reducer, and combiner R functions
for execution. If the data is not already stored in HDFS, then hadoop. run first copies
the data there.
Usage
hadoop.run (
data,
mapper,
reducer,
combiner,
export,
init,
final,
job.name,
config)
Arguments
data
A data frame, Oracle R Enterprise frame (ore. frame), or an HDFS file name.
mapper
The name of a mapper function written in the R language.
reducer
The name of a reducer function written in the R language (optional).
combiner
Not supported in this release.
export
The names of exported R objects.
init
A function that is executed once before the mapper function begins (optional).
final
A function that is executed once after the reducer function completes (optional).
job.name
A descriptive name that you can use to track the progress of the job instead of the
automatically generated job name (optional).
config

Sets the configuration parameters for the MapReduce job (optional).
This argument is an instance of the mapred. config class, and so it has this format:

config = new("mapred.config", paraml, param2, ...

See "ORCH mapred.config Class" on page 8-10 for a description of this class.

9-8 Oracle Big Data Connectors User's Guide

hadoop.run

Usage Notes

Return Value

See Also

Example

Oracle R Advanced Analytics for Hadoop does not support mapper-only jobs. Use
orch.keyvals as a reducer body. See the example in orch.keyvals.

The hadoop . run function returns the results from HDEFS to the source of the input data.
For example, the results for HDFS input data are kept in HDFS, and the results for
ore.frame input data are copied into an Oracle database.

An object in the same format as the input data

hadoop . exec on page 9-5, orch.dryrun on page 9-54, orch.keyvals on page 9-57

This sample script uses hdfs.attach to obtain the object identifier of a small, sample
data file in HDFS named ontime_R.

The MapReduce function counts the number of on-time flights arriving in the San
Francisco International Airport (SFO).

dfs <- hdfs.attach('ontime_R'")

res <- NULL
res <- hadoop.run(
dfs,
mapper = function(key, ontime) {
if (key == 'SFO') {

keyval (key, ontime)
}
¥
reducer = function(key, vals) {
sumAD <- 0
count <- 0
for (x in vals) {
if ('is.na(xSARRDELAY)) {sumAD <- sumAD + xSARRDELAY; count <- count +
1}
}
res <- sumAD / count
keyval (key, res)
}
)
After the script runs, the location of the results is identified by the res variable, in an
HDFES file named /user/oracle/xq/orch3d0b8218:

R> res

[1] "/user/oracle/xqg/orch3d0b8218"
attr(,"dfs.id")

[1] TRUE

R> print (hdfs.get(res))

vall val2

1 SFO 27.05804

The next example shows o

hadoop.run(x,
mapper = function(k,v) {
orch.keyval (k, v+1) # increment all values
¥

ORCH Library Reference 9-9

hadoop.run

reducer = function(k, vv) {
orch.keyvals(k, vv) # pass-through
}

9-10 Oracle Big Data Connectors User's Guide

hdfs.attach

hdfs.attach

Usage

Arguments

Usage Notes

Return Value

See Also

Example

Copies data from an unstructured data file in HDFS into the Oracle R Advanced
Analytics for Hadoop framework. By default, data files in HDFS are not visible to the
connector. However, if you know the name of the data file, you can use this function to
attach it to the Oracle R Advanced Analytics for Hadoop name space.

hdfs.attach(
dfs.name,
force)

dfs.name
The name of a file in HDFS.

force
Controls whether the function attempts to discover the structure of the file and the
data type of each column.

FALSE for comma-separated value (CSV) files (default). If a file does not have metadata
identifying the names and data types of the columns, then the function samples the
data to deduce the data type as number or string. It then re-creates the file with the
appropriate metadata.

TRUE for non-CVS files, including binary files. This setting prevents the function from
trying to discover the metadata; instead, it simply attaches the file.

Use this function to attach a CSV file to your R environment, just as you might attach a
data frame.

Oracle R Advanced Analytics for Hadoop does not support the processing of attached
non-CVS files. Nonetheless, you can attach a non-CSV file, download it to your local
computer, and use it as desired. Alternatively, you can attach the file for use as input to
a Hadoop application.

This function can become slow when processing large input HDFS files, as the result of
inherited limitations in the Hadoop command-line interface.

The object ID of the file in HDFS, or NULL if the operation failed

hdfs.download on page 9-16

This example stores the object ID of ontime_R in a variable named dfs, and then
displays its value.

R> dfs <- hdfs.attach('ontime_R')
R> dfs

ORCH Library Reference 9-11

hdfs.attach

[1] "/user/oracle/xq/ontime_R"
attr(,"dfs.id")
[1] TRUE

9-12 Oracle Big Data Connectors User's Guide

hdfs.cd

hdfs.cd

Usage

Arguments

Return Value

Example

Sets the default HDEFS path.

hdfs.cd(dfs.path)

dfs.path

A path that is either absolute or relative to the current path.

TRUE if the path is changed successfully, or FALSE if the operation failed

This example changes the current directory from /user/oracle to

/user/oracle/sample:

R> hdfs.cd("sample")
[1] "/user/oracle/sample"

ORCH Library Reference 9-13

hdfs.cp

hdfs.cp

Usage

Arguments

Return Value

Example

Copies an HDFS file from one location to another.

hdfs.cp(
dfs.src,
dfs.dst,
force)

dfs.src
The name of the source file to be copied. The file name can include a path that is either
absolute or relative to the current path.

dfs.dst
The name of the copied file. The file name can include a path that is either absolute or
relative to the current path.

force
Set to TRUE to overwrite an existing file, or set to FALSE to display an error message
(default).

NULL for a successful copy, or FALSE for a failed attempt

This example copies a file named weblog in the parent directory and overwrites the
existing weblog file:

R> hdfs.cp("weblog", "..", force=T)

9-14 Oracle Big Data Connectors User's Guide

hdfs.describe

hdfs.describe

Returns the metadata associated with a file in HDFS.

Usage

hdfs.describe (
dfs.id)

Arguments

dfs.id
The name of a file in HDFS. The file name can include a path that is either absolute or
relative to the current path.

Return Value
A data frame containing the metadata, or NULL if no metadata was available in HDFS

Example

This example provides information about an HDFS file named ontime_DB:

R> hdfs.describe('ontime DB')

name
1 path
2 origin
3 class
4 types
5 dim
6 names
7 has.key
8 key.column
9 null.key
10 has.rownames
11 size
12 parts
1 values
2 ontime_DB
3 unknown

ORCH Library Reference 9-15

hdfs.download

hdfs.download

Usage

Arguments

Usage Notes

Return Value

Example

Copies a file from HDFS to the local file system.

hdfs.download (
dfs.id,
filename,
overwrite)

dfs.id
The name of a file in HDFS. The file name can include a path that is either absolute or
relative to the current path.

filename
The name of a file in the local file system where the data is copied.

overwrite
Controls whether the operation can overwrite an existing local file. Set to TRUE to
overwrite filename, or FALSE to signal an error (default).

This function provides the fastest and easiest way to copy a file from HDFS. No data
transformations occur except merging multiple parts into a single file. The local file
has the exact same data as the HDFS file.

Local file name, or NULL if the copy failed

This example displays a list of files in the current HDFS directory and copies
ontime2000.DB to the local file system as /home/oracle/ontime2000.dat.

R> hdfs.ls()

[1] "ontime2000_DB" "ontime_DB" "ontime_File" "ontime_R" "testdata.dat"
R> tmpfile <- hdfs.download("ontime2000_DB", "/home/oracle/ontime2000.dat",
overwrite=F)

R> tmpfile

[1] "/home/oracle/ontime2000.dat"

9-16 Oracle Big Data Connectors User's Guide

hdfs.exists

hdfs.exists

Usage

Arguments

Usage Notes

Return Value

See Also

Example

Verifies that a file exists in HDFS.

hdfs.exists/(
dfs.id)

dfs.id
The name of a file in HDFS. The file name can include a path that is either absolute or
relative to the current path.

If this function returns TRUE, then you can attach the data and use it in a hadoop. run
function. You can also use this function to validate an HDFS identifier and ensure that
the data exists.

TRUE if the identifier is valid and the data exists, or FALSE if the object is not found

is.hdfs.id on page 9-40

This example shows that the ontime_R file exists.

R> hdfs.exists("ontime R")
[1] TRUE

ORCH Library Reference 9-17

hdfs.get

hdfs.get

Usage

Arguments

Usage Notes

Return Value

Example

Copies data from HDFS into a data frame in the local R environment. All metadata is
extracted and all attributes, such as column names and data types, are restored if the
data originated in an R environment. Otherwise, generic attributes like vall and val2
are assigned.

hdfs.get (
dfs.id,
sep)

dfs.id
The name of a file in HDFS. The file name can include a path that is either absolute or
relative to the current path.

sep
The symbol used to separate fields in the file. A comma (,) is the default separator.

If the HDFS file is small enough to fit into an in-memory R data frame, then you can
copy the file using this function instead of the hdfs.pull function. The hdfs.get
function can be faster, because it does not use Sqoop and thus does not have the
overhead incurred by hdfs.pull.

A data. frame object in memory in the local R environment pointing to the exported
data set, or NULL if the operation failed

This example returns the contents of a data frame named res.

R> print (hdfs.get(res))

vall val2
AA 1361.4643
AS 515.8000
CO 2507.2857
DL 1601.6154
HP 549.4286
Nw 2009.7273
TW 1906.0000
UA 1134.0821
US 2387.5000

0 WN 541.1538

= W oo J o Ul i WD

9-18 Oracle Big Data Connectors User's Guide

hdfs.head

hdfs.head

Usage

Arguments

Return Value

See Also

Example

Copies a specified number of lines from the beginning of a file in HDFS.

hdfs.head(
dfs.id,
n)
dfs.id

The name of a file in HDFS. The file name can include a path that is either absolute or
relative to the current path.

n
The number of lines to retrieve from the file. The default is 10.

The first n lines of the file.

hdfs.tail on page 9-37

This example returns the first two lines of ontime_R:

R> hdfs.head('ontime R', 2)

[1]

"\"\", \"YEAR\", \ "MONTH\", \ "MONTH2\ ", \ "DAYOFMONTH\ ", \ "DAYOFMONTH2\ ", \ "DAYOFWEEK\ ", \
"DEPTIME\", \"CRSDEPTIME\", \"ARRTIME\", \ "CRSARRTIME\", \ "UNIQUECARRIER\", \ "FLIGHTNUM
\", \"TAILNUM\ ", \ "ACTUALELAPSEDTIME\ ", \ "CRSELAPSEDTIME\", \"AIRTIME\", \ "ARRDELAY\", \
"DEPDELAY\", \"ORIGIN\", \"DEST\", \"DISTANCE\", \"TAXIIN\", \"TAXIOUT\", \ "CANCELLED\",
\ "CANCELLATIONCODE\", \ "DIVERTED\""

[2]

"\"1\",1994,8,\"M08\",2,\"D02\",2,840,840,1126,1130, \"Nw\",878,NA,106,110,NA,-4,0,
\"MEM\ ", \"TPA\",656,NA,NA, 0,NA, \"0\""

ORCH Library Reference 9-19

hdfs.id

hdfs.id

Converts an HDFS path name to an R dfs. id object.

Usage

hdfs.id(
dfs.x,
force)

Arguments

dfs.x
A string or text expression that resolves to an HDFS file name.

force
Set to TRUE if the file need not exist, or set to FALSE to ensure that the file does exist.

Return Value

TRUE if the string matches an HDFS file name, or NULL if a file by that name is not
found

Example

This example creates a dfs.id object for /user/oracle/demo:

R> hdfs.id('/user/oracle/demo"')
[1] "user/oracle/demo"
attr(,"dfs.id")

[1] TRUE

The next example creates a dfs.id object named id for a nonexistent directory named
/user/oracle/newdemo, after first failing:

R> id<-hdfs.id('/user/oracle/newdemo’')

DBG: 16:11:38 [ER] "/user/oracle/newdemo" is not found
R> id<-hdfs.id('/user/oracle/newdemo’', force=T)

R> id

[1] "user/oracle/newdemo"

attr(,"dfs.id")

[1] TRUE

9-20 Oracle Big Data Connectors User's Guide

hdfs.Is

hdfs.ls

Usage

Arguments

Return Value

See Also

Example

Lists the names of all HDFS directories containing data in the specified path.

hdfs.ls(dfs.path)

dfs.path
A path relative to the current default path. The default path is the current working
directory.

A list of data object names in HDFS, or NULL if the specified path is invalid

hdfs.cd on page 9-13

This example lists the subdirectories in the current directory:

R> hdfs.1ls()

[1] "ontime_DB" "ontime_FILE" "ontime_R"

The next example lists directories in the parent directory:

R> hdfs.1ls("..")

[1] "demo" " input " "output" "sample" "xq"

This example returns NULL because the specified path is not in HDFS.

R> hdfs.ls("/bin")
NULL

ORCH Library Reference 9-21

hdfs.mkdir

hdfs.mkdir

Creates a subdirectory in HDEFS relative to the current working directory.

Usage
hdfs.mkdir (
dfs.name,
cd)
Arguments
dfs.name

Name of the new directory.

cd
TRUE to change the current working directory to the new subdirectory, or FALSE to keep
the current working directory (default).

Return Value

Full path of the new directory as a string, or NULL if the directory was not created

Example

This example creates the /user/oracle/sample directory.

R> hdfs.mkdir('sample', cd=T)
[1] "/user/oracle/sample"
attr(,"dfs.path")

[1] TRUE

9-22 Oracle Big Data Connectors User's Guide

hdfs.mv

hdfs.mv

Usage

Arguments

Return Value

Example

Moves an HDFS file from one location to another.

hdfs.mv (
dfs.src,
dfs.dst,
force)

dfs.src
The name of the source file to be moved. The file name can include a path that is either
absolute or relative to the current path.

dfs.dst
The name of the moved file. The file name can include a path that is either absolute or
relative to the current path.

force
Set to TRUE to overwrite an existing destination file, or FALSE to cancel the operation
and display an error message (default).

NULL for a successful copy, or FALSE for a failed attempt

This example moves a file named weblog to the demo subdirectory and overwrites the
existing weblog file:

R> hdfs.mv("weblog", "./demo", force=T)

ORCH Library Reference 9-23

hdfs.parts

hdfs.parts

Usage

Arguments

Usage Notes

Return Value

Example

Returns the number of parts composing a file in HDFS.

hdfs.parts|(
dfs.id)

dfs.id
The name of a file in HDFS. The file name can include a path that is either absolute or
relative to the current path.

HDFS splits large files into parts, which provide a basis for the parallelization of
MapReduce jobs. The more parts an HDFS file has, the more mappers can run in
parallel.

The number of parts composing the object, or 0 if the object does not exist in HDFS

This example shows that the ontime_R file in HDFS has one part:

R> hdfs.parts("ontime_R")
[1] 1

9-24 Oracle Big Data Connectors User's Guide

hdfs.pull

hdfs.pull

Usage

Arguments

Usage Notes

Copies data from HDFS into an Oracle database.

This operation requires authentication by Oracle Database. See orch. connect on
page 9-41.

hdfs.pull(
dfs.id,
sep,
db.name,
overwrite,
driver)

dfs.id
The name of a file in HDFS. The file name can include a path that is either absolute or
relative to the current path.

sep
The symbol used to separate fields in the file (optional). A comma (,) is the default
separator.

db.name
The name of a table in an Oracle database.

overwrite
Controls whether db.name can overwrite a table with the same name. Set to TRUE to
overwrite the table, or FALSE to signal an error (default).

driver

Identifies the driver used to copy the data: Sqoop (default) or olh to use Oracle Loader
for Hadoop. You must set up Oracle Loader for Hadoop before using it as a driver. See
the Usage Notes and "Oracle Loader for Hadoop Setup" on page 1-12..

With the Oracle Advanced Analytics option, you can use Oracle R Enterprise to
analyze the data after loading it into an Oracle database.

Choosing a Driver

Sqoop is synchronous, and copying a large data set may take a while. The prompt
reappears and you regain use of R when copying is complete.

Oracle Loader for Hadoop is much faster than Sqoop, and so you should use it as the
driver if possible.

Correcting Problems With the OLH Driver

If Oracle Loader for Hadoop is available, then you see this message when the ORCH
library is loading:

OLH 2.0.0 is up

ORCH Library Reference 9-25

hdfs.pull

Return Value

See Also

If you do not see this message, then Oracle Loader for Hadoop is not installed
properly. Check that these environment variables are set correctly:

= OLH_HOME: Set to the installation directory
= HADOOP_CLASSPATH: Includes $0LH_HOME/jlib/*
» CLASSPATH: Includes $O0LH_HOME/jlib /*

If hdfs.pull fails and HADOOP_CLASSPATH is set correctly, then the version of Oracle
Loader for Hadoop may be incorrect for the version of CDH. Check the Oracle Loader
for Hadoop log file.

See Also: "Oracle Loader for Hadoop Setup" on page 1-12 for
installation instructions

An ore. frame object that points to the database table with data loaded from HDFS, or
NULL if the operation failed

Oracle R Enterprise User’s Guide for a description of ore. frame objects.

9-26 Oracle Big Data Connectors User's Guide

hdfs.push

hdfs.push

Usage

Arguments

Usage Notes

Return Value

See Also

Copies data from an Oracle database to HDFS.

This operation requires authentication by Oracle Database. See orch. connect on
page 9-41.

hdfs.push(
X,
key,
dfs.name,
overwrite,
driver,
split.by)

X
An ore. frame object with the data in an Oracle database to be pushed.

key
The index or name of the key column.

dfs.name
Unique name for the object in HDFS.

overwrite
TRUE to allow dfs.name to overwrite an object with the same name, or FALSE to signal
an error (default).

driver
Identifies the driver used to copy the data. This argument is currently ignored because
Sqoop is the only supported driver.

split.by
The column to use for data partitioning (required).

Because this operation is synchronous, copying a large data set may take a while. The
prompt reappears and you regain use of R when copying is complete.

An ore. frame object is an Oracle R Enterprise metadata object that points to a
database table. It corresponds to an R data. frame object.

If you omit the split.by argument, then hdfs.push might import only a portion of the
data into HDFS.

The full path to the file that contains the data set, or NULL if the operation failed

Oracle R Enterprise User’s Guide

ORCH Library Reference 9-27

hdfs.push

Example

This example creates an ore. frame object named ontime_s2000 that contains the rows
from the ONTIME_S database table in where the year equals 2000. Then hdfs . push uses
ontime_s2000 to create /user/oracle/xq/ontime2000_DB in HDFS.

R> ontime_s2000 <- ONTIME_S[ONTIME_S$YEAR == 2000,]
R> class(ontime_s2000)

[1] "ore.frame"

attr(, "package")

[1] "OREbase"

R> ontime2000.dfs <- hdfs.push(ontime_s2000, key='DEST', dfs.name='ontime2000_DB',
'split.by='YEAR')

R> ontime2000.dfs

[1] "/user/oracle/xqg/ontime2000_DB"

attr(,"dfs.id")

[1] TRUE

9-28 Oracle Big Data Connectors User's Guide

hdfs.put

hdfs.put

Usage

Arguments

Usage Notes

Return Value

Example

Copies data from an R in-memory object (data.frame) to HDFS. All data attributes, like
column names and data types, are stored as metadata with the data.

hdfs.put (
data,
key,
dfs.name,
overwrite,
rownames)
data

An ore. frame object in the local R environment to be copied to HDEFS.

key
The index or name of the key column.

dfs.name
A unique name for the new file.

overwrite
Controls whether dfs.name can overwrite a file with the same name. Set to TRUE to
overwrite the file, or FALSE to signal an error.

rownames
Set to TRUE to add a sequential number to the beginning of each line of the file, or
FALSE otherwise.

You can use hdfs.put instead of hdfs.push to copy data from ore. frame objects, such
as database tables, to HDFS. The table must be small enough to fit in R memory;
otherwise, the function fails. The hdfs.put function first reads all table data into local
R memory and then transfers it to HDFS. For a small table, this function can be faster
than hdfs.push because it does not use Sqoop and thus does not have the overhead
incurred by hdfs.push.

The object ID of the new file, or NULL if the operation failed

This example creates a file named /user/oracle/xq/testdata.dat with the contents of
the dat data frame.

R> myfile <- hdfs.put(dat, key='DEST', dfs.name='testdata.dat')
R> print (myfile)

[1] "/user/oracle/xqg/testdata.dat"

attr(,"dfs.id")

[1] TRUE

ORCH Library Reference 9-29

hdfs.pwd

hdfs.pwd

Identifies the current working directory in HDFS.

Usage
hdfs.pwd()

Return Value

The current working directory, or NULL if your R environment is not connected to
HDFS

Example
This example shows that /user/oracle is the current working directory.

R> hdfs.pwd()
[1] "/user/oracle/"

9-30 Oracle Big Data Connectors User's Guide

hdfs.rm

hdfs.rm

Usage

Arguments

Usage Notes

Return Value

Example

Removes a file or directory from HDFS.

hdfs.rm(
dfs.id,
force)

dfs.id
The name of a file or directory in HDFS. The name can include a path that is either
absolute or relative to the current path.

force
Controls whether a directory that contains files is deleted. Set to TRUE to delete the
directory and all its files, or FALSE to cancel the operation (default).

All object identifiers in Hadoop pointing to this data are invalid after this operation.

TRUE if the data is deleted, or FALSE if the operation failed

This example removes the file named datal.log in the current working HDFS
directory:

R> hdfs.rm("datal.log")
[1] TRUE

ORCH Library Reference 9-31

hdfs.rmdir

hdfs.rmdir

Deletes a directory in HDFS.

Usage
hdfs.rmdir(
dfs.name,
force)
Arguments
dfs.name

Name of the directory in HDFS to delete. The directory can be an absolute path or
relative to the current working directory.

force
Controls whether a directory that contains files is deleted. Set to TRUE to delete the
directory and all its files, or FALSE to cancel the operation (default).

Usage Notes

This function deletes all data objects stored in the directory, which invalidates all
associated object identifiers in HDFS.

Return Value
TRUE if the directory is deleted successfully, or FALSE if the operation fails

Example

R> hdfs.rmdir ("mydata")
[1] TRUE

9-32 Oracle Big Data Connectors User's Guide

hdfs.root

hdfs.root

Returns the HDFS root directory.

Usage
hdfs.root()

Return Value
A data frame with the full path of the HDFS root directory

Usage Notes

The default HDFS root is set to /. Users to not have write privileges to this directory.
To change the HDEFS root to a path where you have write access, use the hdfs.setroot
function.

See Also
hdfs.setroot on page 9-35

Example
This example identifies /user/oracle as the root directory of HDFS.

R> hdfs.root ()
[1] "/user/oracle"

ORCH Library Reference 9-33

hdfs.sample

hdfs.sample

Usage

Arguments

Usage Notes

Return Value

Example

Copies a random sample of data from a Hadoop file into an R in-memory object. Use
this function to copy a small sample of the original HDFS data for developing the R
calculation that you ultimately want to execute on the entire HDFS data set on the
Hadoop cluster.

hdfs.sample (
dfs.id,
lines,
sep)

dfs.id
The name of a file in HDFS. The file name can include a path that is either absolute or
relative to the current path.

lines
The number of lines to return as a sample. The default value is 1000 lines.

sep
The symbol used to separate fields in the Hadoop file. A comma (,) is the default
separator.

If the data originated in an R environment, then all metadata is extracted and all
attributes are restored, including column names and data types. Otherwise, generic
attribute names, like vall and val2, are assigned.

This function can become slow when processing large input HDEFS files, as the result of
inherited limitations in the Hadoop command-line interface.

A data. frame object with the sample data set, or NULL if the operation failed

This example displays the first three lines of the ontime_R file.

R> hdfs.sample("ontime_R", lines=3)
YEAR MONTH MONTH2 DAYOFMONTH DAYOFMONTH2 DAYOFWEEK DEPTIME...

1 2000 12 NA 31 NA 7 1730...
2 2000 12 NA 31 NA 7 1752...
3 2000 12 NA 31 NA 7 1803...

9-34 Oracle Big Data Connectors User's Guide

hdfs.setroot

hdfs.setroot

Usage

Arguments

Usage Notes

Return Value

Example

Sets the HDFS root directory.

hdfs.setroot (dfs.root)

dfs.root
The full path in HDFS to be set as the current root directory. If this argument is
omitted, then your HDFS home directory is used as the root.

Use hdfs. root on page 9-33 to see the current root directory.

All HDFS paths and operations using Oracle R Advanced Analytics for Hadoop are
relative to the current HDFS root. You cannot change the current working directory
above the root directory. Users do not have write access to the HDFS / directory,
which is the default HDFS root directory.

The full path to the newly set HDFS root directory, or NULL if an error prevented a
new root directory from being set

This example changes the HDFS root directory from /user/oracle to
/user/oracle/demo.

R> hdfs.root ()

[1] "/user/oracle"

R> hdfs.setroot ("/user/oracle/demo")
R> hdfs.root ()

[1] "/user/oracle/demo"

ORCH Library Reference 9-35

hdfs.size

hdfs.size

Usage

Arguments

Usage Notes

Return Value

Example

Returns the size of a file in HDFS.

hdfs.size(
dfs.id,
units)
dfs.id

The name of a file in HDFS. The file name can include a path that is either absolute or
relative to the current path.

lSj}ranetcsifies a unit of measurement for the return value:
= KB (kilobytes)

= MB (megabytes)
=GB (gigabytes)
= TB (terabytes)
= PB(petabytes)

The unit defaults to bytes if you omit the argument or enter an unknown value.

Use this interface to determine, for instance, whether you can copy the contents of an
entire HDFS file into local R memory or a local file, or if you can only sample the data
while creating a prototype of your R calculation.

Size of the object, or 0 if the object does not exist in HDFS

This example returns a file size for ontime_R of 999,839 bytes.

R> hdfs.size("ontime_R")
[1] 999839

9-36 Oracle Big Data Connectors User's Guide

hdfs.tail

hdfs.tail

Usage

Arguments

Return Value

See Also

Example

Copies a specified number of lines from the end of a file in HDFS.

hdfs.tail(
dfs.id,
n)
dfs.id

The name of a file in HDFS. The file name can include a path that is either absolute or
relative to the current path.

n
The number of lines to retrieve from the file.

The last n lines of the file.

hdfs.head on page 9-19

This example returns the last three lines of ontime.R:

R> hdfs.tail('ontime R', 3)

[1]
"\"219930\",1994,8,\"M08\",1,\"DO1\",1,1947,1945,2038,2048,\"US\",1073,NA, 51,63 ,NA
,-10,2,\"PIT\",\"LAN\",275,NA,NA, 0, NA, \"0\""

[2]
"\"219931\",1994,8,\"M08\",2,\"D02\",2,802,805,948,950,\"AA\",1726,NA,106,105,NA, -
2,-3,\"DFW\",\"BNA\",631,NA,NA,0,NA, \"0\""

[3]
"\"219932\",1994,8,\"M08\",2,\"D02\",2,829,832,1015,1011,\"US\",1191,NA,166,159,NA
,4,-3,\"BWI\",\"MSY\",998,NA,NA, O, NA,\"0\""

ORCH Library Reference 9-37

hdfs.upload

hdfs.upload

Usage

Arguments

Usage Notes

Return Value

See Also

Example

Copies a file from the local file system into HDFS.

hdfs.upload(
filename,
dfs.name,
overwrite,
split.size,
header)

filename
Name of a file in the local file system.

dfs.name
Name of the new directory in HDFS.

overwrite
Controls whether dfs.name can overwrite a directory with the same name. Set to TRUE
to overwrite the directory, or FALSE to signal an error (default).

split.size
Maximum number of bytes in each part of the Hadoop file (optional).

header
Indicates whether the first line of the local file is a header containing column names.
Set to TRUE if it has a header, or FALSE if it does not (default).

A header enables you to exact the column names and reference the data fields by name
instead of by index in your MapReduce R scripts.

This function provides the fastest and easiest way to copy a file into HDFS. If the file is
larger than split.size, then Hadoop splits it into two or more parts. The new
Hadoop file gets a unique object ID, and each part is named part-0000x. Hadoop
automatically creates metadata for the file.

HDFS object ID for the loaded data, or NULL if the copy failed

hdfs.download on page 9-16, hdfs.get on page 9-18, hdfs.put on page 9-29

This example uploads a file named ontime_s2000.dat into HDFS and shows the
location of the file, which is stored in a variable named ontime.dfs_File.

R> ontime.dfs_File <- hdfs.upload('ontime_s2000.dat', dfs.name='ontime_ File')
R> print (ontime.dfs_File)

9-38 Oracle Big Data Connectors User's Guide

hdfs.upload

[1] "/user/oracle/xqg/ontime_File"

ORCH Library Reference 9-39

is.hdfs.id

is.hdfs.id

Usage

Arguments

Return Value

See Also

Example

Indicates whether an R object contains a valid HDFS file identifier.

is.hdfs.id(x)

X
The name of an R object.

TRUE if x is a valid HDFS identifier, or FALSE if it is not

hdfs.attach on page 9-11, hdfs.id on page 9-20

This example shows that dfs contains a valid HDFS identifier, which was returned by
hdfs.attach:

R> dfs <- hdfs.attach('ontime_R')
R> is.hdfs.id(dfs)

[1] TRUE

R> print (dfs)

[1] "/user/oracle/xg/ontime_R"
attr(,"dfs.id")

[1] TRUE

The next example shows that a valid file name passed as a string is not recognized as a
valid file identifier:

R> is.hdfs.id('/user/oracle/xg/ontime_R')
[1] FALSE

9-40 Oracle Big Data Connectors User's Guide

orch.connect

orch.connect

Usage

Arguments

Usage Notes

Establishes a connection to Oracle Database.

orch.connect (
host,
user,
sid,
passwd,
port,
secure,
driver,
silent)

host
Host name or IP address of the server where Oracle Database is running.

user
Database user name.

sid
System ID (SID) for the Oracle Database instance.

passwd
Password for the database user. If you omit the password, you are prompted for it.

port
Port number for the Oracle Database listener. The default value is 1521.

secure
Authentication setting for Oracle Database:

= TRUE: You must enter a database password each time you attempt to connect
(default).

= FALSE: You must enter a database password only once during a session. The
encrypted password is kept in memory and used for subsequent connection
attempts.

driver
Driver used to connect to Oracle Database (optional). Sqoop is the default driver.

silent
TRUE to suppress the prompts for missing host, user, password, port, and SID values,
or FALSE to see them (default).

Use this function when your analysis requires access to data stored in an Oracle
database or to return the results to the database.

ORCH Library Reference 9-41

orch.connect

Return Value

See Also

Example

With an Oracle Advanced Analytics license for Oracle R Enterprise and a connection
to Oracle Database, you can work directly with the data stored in database tables and
pass processed data frames to R calculations on Hadoop.

You can reconnect to Oracle Database using the connection object returned by the
orch.dbcon function.

TRUE for a successful and validated connection, or FALSE for a failed connection
attempt

orch.dbcon on page 9-45, orch.disconnect on page 9-52

This example installs the ORCH library and connects to Oracle Database on the local
system:

R> library(ORCH)
Loading required package: OREbase

Attaching package: OREbase
The following object(s) are masked from package:base:

cbind, data.frame, eval, interaction, order, paste, pmax, pmin,
rbind, table

Loading required package: OREstats
Loading required package: MASS
Loading required package: ORCHcore
Oracle R Connector for Hadoop 2.0
Hadoop 2.0.0-cdh4.1.2 is up

Sqoop 1.4.1-cdh4.1.2 is up

OLH 2.0.0 is up

R> orch.connect ("localhost", "RQUSER", "orcl")
Connecting ORCH to RDBMS via [sgoop]

Host: localhost

Port: 1521

SID: orcl

User: RQUSER
Enter password for [RQUSER]: password
Connected.
[1] TRUE

Note: If you see the message "p with Hadoop MapReduce" when
you load ORCH, then clear the HADOOP_HOME environment variable. See
"Installing the Software on Hadoop" on page 1-17.

The next example uses a connection object to reconnect to Oracle Database:

R> conn<-orch.dbcon()
R> orch.disconnect ()
Disconnected from a database.

9-42 Oracle Big Data Connectors User's Guide

orch.connect

R> orch.connect (conn)
Connecting ORCH to RDBMS via [sgoop]
Host: localhost
Port: 1521
SID: orcl
User: RQUSER
Enter password for [RQUSER]: password
Connected
[1] TRUE

ORCH Library Reference 9-43

orch.connected

orch.connected

Checks whether Oracle R Advanced Analytics for Hadoop is connected to Oracle
Database.

Usage

orch.connected()

Return Value

TRUE if Oracle R Advanced Analytics for Hadoop has a connection to Oracle Database,
or FALSE if it does not.

Example

This example shows that Oracle R Advanced Analytics for Hadoop does not have a
connection to Oracle Database:

R> orch.connected ()
[1] TRUE

9-44 Oracle Big Data Connectors User's Guide

orch.dbcon

orch.dbcon

Returns a connection object for the current connection to Oracle Database, excluding
the authentication credentials.

Usage

orch.dbcon ()

Return Value

A data frame with the connection settings for Oracle Database

Usage Notes

Use the connection object returned by orch.dbcon to reconnect to Oracle Database
using orch.connect.

See Also

orch.connect on page 9-41

Example

This example shows how you can reconnect to Oracle Database using the connection
object returned by orch.dbcon:

R> orch.connect('localhost', 'RQUSER', 'orcl')
Connecting ORCH to RDBMS via [sgoop]

Host: localhost

Port: 1521

SID: orcl

User: RQUSER
Enter password for [RQUSER]: password
Connected
[1] TRUE

R> conn<-orch.dbcon()
R> orch.disconnect ()
Disconnected from a database.

R> orch.connect (conn)
Connecting ORCH to RDBMS via [sgoop]
Host: localhost
Port: 1521
SID: orcl
User: RQUSER
Enter password for [RQUSER]: password
Connected
[1] TRUE

The following shows the connection object returned by orch.dbcon in the previous
example:

R> conn

Object of class "orch.dbcon"

data frame with 0 columns and 0 rows
Slot "ok":

ORCH Library Reference 9-45

orch.dbcon

[1] TRUE

Slot "host":
[1] "localhost"

Slot "port":
[1] 1521

Slot "sid"
[1] "orcl"

Slot "user":
[1] "RQUSER"

Slot "passwd":
[l] nn

Slot "secure":

[1] TRUE
Slot "drv":
[l] "Sqoop"

9-46 Oracle Big Data Connectors User's Guide

orch.dbg.lasterr

orch.dbg.lasterr
Returns the last error message.

Usage
orch.dbg.lasterr()

Return Value

The last error message.

Example

This example returns the last error message, which indicates a problem with the
Hadoop installation.

R> orch.dbg.lasterr()
[1] "split column must be specified"

ORCH Library Reference 9-47

orch.dbg.off

orch.dbg.off

Turns off debugging mode.

Usage
orch.dbg.off ()

Return Value
FALSE

See Also
orch.dbg.on on page 9-49

Example
This example turns off debugging:

R> orch.dbg.off ()

9-48 Oracle Big Data Connectors User's Guide

orch.dbg.on

orch.dbg.on
Turns on debugging mode.

Usage

orch.dbg.on(severity)

Arguments
severity

Identifies the type of error messages that are displayed. You can identify the severity
by the number or by the case-insensitive keyword shown in Table 9-1.

Table 9-1 Debugging Severity Levels

Keyword Number Description

all 11 Return all messages.
critical 1 Return only critical errors.
error 2 Return all errors.

warning 3 Return all warnings.

Return Value
The severity level

See Also
orch.dbg.output on page 9-50, orch.dbg.off on page 9-48

Example
This example turns on debugging for all errors:

R> severe<-orch.dbg.on(severity<-2)
R> severe
[1 1 " ERROR " n 2 "

ORCH Library Reference 9-49

orch.dbg.output

orch.dbg.output

Directs the output from the debugger.

Usage
orch.dbg.output (con)
Arguments
con
Identifies the stream where the debugging information is sent: stderr (), stdout (), or
a file name.

Usage Notes

You must first turn on debugging mode before redirecting the output.

Return Value

The current stream

See Also
orch.dbg.on on page 9-49

Example

This example turns on debugging mode and sends the debugging information to
stderr. The orch.dbg. output function returns a description of stderr.

R> orch.dbg.on('all')

R> err<-orch.dbg.output (stderr())

17:32:11 [SY] debug output set to "stderr"

R> print (err)

description class mode text opened can read can write
"stderr" "terminal" w" "text" "opened" "no" "yes"

The next example redirects the output to a file named debug.log:

R> err<-orch.dbg.output ('debug.log')

17:37:45 [SY] debug output set to "debug.log"
R> print (err)

[1] "debug.log"

9-50 Oracle Big Data Connectors User's Guide

orch.dbinfo

orch.dbinfo

Displays information about the current connection.
Usage

orch.dbinfo (dbcon)
Arguments

dbcon
An Oracle Database connection object.

Return Value
NULL

See Also
orch.dbcon on page 9-45

Example

This example displays the information stored in a connection object named conn.

R> orch.dbinfo(conn)
Connected to a database via [sgoop]
Host: localhost
Port: 1521
SID: orcl
User: RQUSER

ORCH Library Reference 9-51

orch.disconnect

orch.disconnect

Disconnects the local R session from Oracle Database.

Usage
orch.disconnect (
silent,
dbcon)
Arguments

silent
Set to TRUE to suppress all messages, or FALSE to see them (default).

dbcon

Set to TRUE to display the connection details, or FALSE to suppress this information
(default).

Usage Notes

No orch functions work without a connection to Oracle Database.

Return Value
An Oracle Database connection object when dbcon is TRUE, otherwise NULL

See Also

orch.connect on page 9-41

Example
This example disconnects the local R session from Oracle Database:

R> orch.disconnect ()
Disconnected from a database.

The next example disconnects the local R session from Oracle Database and displays
the returned connection object:

R> oid<-orch.disconnect (silent=TRUE, dbcon=TRUE)
R> oid

Object of class "orch.dbcon"

data frame with 0 columns and 0 rows

slow "ok":

[1] TRUE

Slot "host":
[1] "localhost"

Slow "port":
[1] 1521

Slot "sid":
[1] orcl

Slot "user":

9-52 Oracle Big Data Connectors User's Guide

orch.disconnect

[1] RQUSER

Slot "passwd":

[l] nn

Slot "secure":

[1] TRUE
Slot "drv":
[l] "Sqoop"

ORCH Library Reference 9-53

orch.dryrun

orch.dryrun

Usage

Arguments

Usage Notes

Return Value

See Also

Example

Switches the execution platform between the local host and the Hadoop cluster. No
changes in the R code are required for a dry run.

orch.dryrun (onoff)

onoff
Set to TRUE to run a MapReduce program locally, or FALSE to run the program on the
Hadoop cluster.

The orch.dryrun function enables you to run a MapReduce program locally on a
laptop using a small data set before running it on a Hadoop cluster using a very large
data set. The mappers and reducers are run sequentially on row streams from HDFS.
The Hadoop cluster is not required for a dry run.

The current setting of orch.dryrun

hadoop . exec on page 9-5, hadoop . run on page 9-8

This example changes the value of orch.dryrun from FALSE to TRUE.

R> orch.dryrun()

[1] FALSE

R> orch.dryrun(onoff<-T)
R> orch.dryrun()

[1] TRUE

9-54 Oracle Big Data Connectors User's Guide

orch.export

orch.export

Usage

Arguments

Usage Notes

Return Value

See Also

Example

Makes R objects from a user's local R session available in the Hadoop execution
environment, so that they can be referenced in MapReduce jobs.

orch.export(...)

One or more variables, data frames, or other in-memory objects, by name or as an
explicit definition, in a comma-separated list.

You can use this function to prepare local variables for use in hadoop . exec and
hadoop. run functions. The mapper, reducer, combiner, init, and final arguments can
reference the exported variables.

A list object
hadoop . exec on page 9-5, hadoop . run on page 9-8

This code fragment shows orch.export used in the export argument of the
hadoop . run function:

hadoop.run(x,
export = orch.export(a=1l, b=2),
mapper = function(k,v) {
X <-a+b
orch.keyval (key=NULL, val=x)

)

The following is a similar code fragment, except that the variables are defined outside
the hadoop. run function:

a=1
b=2
hadoop.run (x,
export = orch.export(a, b),

ORCH Library Reference 9-55

orch.keyval

orch.keyval
Outputs key-value pairs in a MapReduce job.
Usage
orch.keyval (
key,
value)
Arguments
key
A scalar value.
value
A data structure such as a scalar, list, data frame, or vector.
Usage Notes

This function can only be used in the mapper, reducer, or combiner arguments of
hadoop . exec and hadoop . run. Because the orch.keyval function is not exposed in the
ORCH client API, you cannot call it anywhere else.

Return Value
(key, value) structures

See Also
orch.pack on page 9-59

Example
This code fragment creates a mapper function using orch.keyval:

hadoop.run(data,
mapper = function(k,v) {

orch.keyval (k,v)
})

9-56 Oracle Big Data Connectors User's Guide

orch.keyvals

orch.keyvals

Outputs a set of key-value pairs in a MapReduce job.

Usage
orch.keyvals (
key,
value)
Arguments

key
A scalar value.

value
A data structure such as a scalar, list, data frame, or vector.

Usage Notes

This function can only be used in the mapper, reducer, or combiner arguments of
hadoop . exec and hadoop . run. Because the orch.keyvals function is not exposed in
the ORCH client API, you cannot call it anywhere else.

See Also
orch.keyval on page 9-56, orch.pack on page 9-59

Return Value

(key, value) structures

Example

This code fragment creates a mapper function using orch.keyval and a reducer
function using orch.keyvals:

hadoop.run(data,
mapper (k,v) {
if (v$value > 10) {
orch.keyval (k, v)
}
else {
NULL
}
I
reducer (k,vals) {
orch.keyvals (k,vals)
}
)

The following code fragment shows orch.keyval in a for loop to perform the same
reduce operation as orch.keyvals in the previous example:

reducer (k,vals) {
out <- list()
for (v in vals) {

ORCH Library Reference 9-57

orch.keyvals

out <- list(out, orch.keyval(k,vals))

out

9-58 Oracle Big Data Connectors User's Guide

orch.pack

orch.pack

Usage

Arguments

Usage Notes

Return Value

See Also

Example

Compresses one or more in-memory R objects that the mappers or reducers must write
as the values in key-value pairs.

orch.pack(...)

One or more variables, data frames, or other in-memory objects in a comma-separated
list.

You should use this function when passing nonscalar or complex R objects, such as
data frames and R classes, between the mapper and reducer functions. You do not
need to use it on scalar or other simple objects. You can use orch.pack to vary the data
formats, data sets, and variable names for each output value.

You should also use orch.pack when storing the resultant data set in HDFS. The
compressed data set is not corrupted by being stored in an HDFS file.

The orch.pack function must always be followed by the orch.unpack function to
restore the data to a usable format.

Compressed character-type data as a long string with no special characters

hadoop . exec on page 9-5, hadoop . run on page 9-8, orch.keyval on page 9-56,
orch.unpack on page 9-62

This code fragment compresses the content of several R objects into a serialized stream
using orch.pack, and then creates key-value pairs using orch.keyval:

orch.keyval (NULL, orch.pack(

r =r,
ay = ay.,
YY =YY,

nRows = nRows))

ORCH Library Reference 9-59

orch.reconnect

orch.reconnect

Reconnects to Oracle Database with the credentials previously returned by
orch.disconnect.

Note: The orch.reconnect function is deprecated in release 1.1 and
will be desupported in release 2.0. Use orch. connect to reconnect
using a connection object returned by orch.dbcon.

Usage

orch.reconnect (dbcon)

Arguments

dbcon
Credentials previously returned by orch.disconnect.

Usage Notes

Oracle R Advanced Analytics for Hadoop preserves all user credentials and
connection attributes, enabling you to reconnect to a previously disconnected session.
Depending on the orch. connect secure setting for the original connection, you may be
prompted for a password. After reconnecting, you can continue data transfer
operations between Oracle Database and HDFS.

Reconnecting to a session is faster than opening a new one, because reconnecting does
not require extensive connectivity checks.

Return Value

TRUE for a successfully reestablished and validated connection, or FALSE for a failed
attempt

See Also

orch.connect on page 9-41

Example

9-60

R> orch.reconnect (oid)
Connecting ORCH to RDBMS via [sgoop]
Host: localhost
Port: 1521
SID: orcl
User: RQUSER
Enter password for [RQUSER]: password
Connected
[1] TRUE

Oracle Big Data Connectors User's Guide

orch.temp.path

orch.temp.path
Sets the path where temporary data is stored.

Usage
orch.temp.path (path)

Arguments

path
The full path to an existing HDFS directory.

Return Value

The current temporary path

Example
This example returns /tmp as the current temporary directory.

R> orch.temp.path()
[11 |l/tmpll

ORCH Library Reference 9-61

orch.unpack

orch.unpack
Restores the R objects that were compressed with a previous call to orch.pack.

Usage

orch.unpack(...)

Arguments

The name of a compressed object.

Usage Notes

This function is typically used at the beginning of a mapper or reducer function to
obtain and prepare the input. However, it can also be used externally, such as at the R
console, to unpack the results of a MapReduce job.

Consider this data flow:
ORCH client to mapper to combiner to reducer to ORCH client.

If the data is packed at one stage, then it must be unpacked at the next stage.

Return Value
Uncompressed list-type data, which can contain any number and any type of variables

See Also
orch.pack on page 9-59
Example
This code fragment restores the data that was compressed in the orch.pack example:
reducer = function(key, vals) {
X <-orch.unpack(vals[[1]])
r <-xSqy

vy <= x$yy
nRow <- x$nRows

9-62 Oracle Big Data Connectors User's Guide

orch.version

orch.version
Identifies the version of the ORCH package.

Usage

orch.version()

Return Value

ORCH package version number

Example
This example shows that the ORCH version number is 2.0.

R> orch.version()
[1] B

ORCH Library Reference 9-63

orch.version

9-64 Oracle Big Data Connectors User's Guide

A
access privileges, Oracle Database, 1-10
adapters

Avro, 6-2

Oracle NoSQL Database, 6-29
additional_path.txt file for ODI, 4-4
aggregate functions for Hive, 8-3
ALTER SESSION commands, 2-31
annotations

Avro collection, 6-5

equal to Oracle Loader for Hadoop configuration

properties, 6-26

Oracle Database adapter, 6-20

Oracle NoSQL Database adapter, 6-38
Apache Hadoop distribution, 1-3, 1-4, 1-5, 1-12, 1-17
Apache licenses, 3-40, 3-43, 3-44
APIs in ORCH, 8-2
APPEND hint, 2-31
as.ore.* functions, 8-3
Avro

functions for reading, 6-5

functions for writing, 6-7
Avro array,

reading as XML, 6-12
Avro file adapter, 6-2

reading Avro as XML, 6-10

writing XML as Avro, 6-14
Avro files

converting text to, 6-8

functions for reading, 6-3

querying records, 6-9

reading, 6-5

reading as XML, 6-10

writing, 6-7
Avro license, 3-43
Avro maps, 6-3
Avro maps, reading as XML, 6-11
Avro null values, 6-14
Avro primitives

reading as XML, 6-14
Avro records, reading as XML, 6-10
Avro unions, reading as XML, 6-13
avro:collection-avroxml function, 6-3
avro:get function, 6-3
avroxml method, 6-10, 6-14

Index

bagged.clust.R demo, 8-18

balancing loads in Oracle Loader for Hadoop, 3-23
bashrc configuration file, 1-18

batchSize property, 6-45

bitops R package, 9-59, 9-62

bzip2 input files, 2-25

Cc

cd command
executing in HDFS from R, 9-13
CDHa3 distribution, 1-12
character encoding, 6-39, 6-42
character methods for Hive, 8-4
CKM Hive, 4-2,4-10
client libraries, 1-12
clients
configuring Hadoop, 1-5,1-22
collection annotations
Avro, 6-5
collection function
Oracle NoSQL Database adapter, 6-38
combiners
generating key-value pairs for in R, 9-56, 9-57
running from R, 9-5,9-8
compressed data files, 2-25
compressed files, 2-26
compressionin R, 9-59
compression methods, 6-8
configuration properties
for Oracle XQuery for Hadoop, 6-26
Oracle NoSQL Database adapter, 6-44
configuration settings
Hadoop client, 1-5,1-22
Oracle Data Integrator agent, 4-5
Oracle Data Integrator interfaces, 4-8
Oracle Data Integrator Studio, 4-6
R MapReduce jobs, 8-10
Sqoop utility, 1-18
configuring a Hadoop client, 1-5,1-22
connecting to Oracle Database from R, 9-3
connection objects
reconnecting to Oracle Database with, 9-42
consistency property, 6-46

Index-1

conversion functions in ORCH, 8-3
copying data
from an Oracle database to HDFS using R, 9-27,
9-29
from HDFS to an Oracle database using R, 9-25
from HDFS to an R data frame, 9-18
from local files to HDFS using R, 9-38
copying files
from HDFS to Linux using R, 9-16
cp command
executing in HDFS from R, 9-14
CREATE SESSION privilege, 1-10
CREATE TABLE privilege, 1-11
CREATE_TARG_TABLE option, 4-9,4-10, 4-11
CSV files, 2-26,3-26,9-11

D

data compressionin R, 9-59
data decompressionin R, 9-62
data files
accessing from R, 9-11
copying database objects into using R, 9-27
copying into Oracle Database using R, 9-25
deleting from HDFS using R, 9-31
obtaining size from R, 9-36
sampling from R, 9-34
uploading local, 9-38
See also files; HDFS files
data frames
copying HDFS data into, 9-18
example of mapper output format, 9-6
example program using, 8-23, 8-25, 8-27, 8-28,
8-29
from Oracle R Enterprise, 9-8
input to mappers, 9-8
data integrity checking, 4-10
Data Pump files, 2-8
XML template, 2-9
data sources
defining for Oracle Data Integrator, 4-3
data transformations, 4-10
data type mappings
between XQuery and Avro, 6-14
between XQuery and Oracle Database, 6-21
data types
Oracle Loader for Hadoop, 3-5
data validation in Oracle Data Integrator, 4-2,4-10
database
copying data from using R, 9-29
database connections
disconnecting using R, 9-52
from R, 9-41,9-44,9-45
querying from R, 9-51
reconnecting from R, 9-60
database directories
for Oracle SQL Connector for HDFS, 1-7
database objects
copying to HDFS using R, 9-27
database patches, 1-4,1-12,2-8

Index-2

database privileges, 1-10
database system, configuring to run MapReduce
jobs, 1-5
DataServer objects
creating for Oracle Data Integrator, 4-3
debugging in R
displaying last error, 9-47
identifying version, 9-63
redirecting output, 9-50
turning off, 9-48
turning on, 9-49
decompression in R, 9-62
DEFER_TARGET_LOAD option, 4-9
DELETE_ALL option, 4-11
DELETE_TEMPORARY_OBJECTS option, 4-9, 4-10,
4-11
delimited text files
XML templates, 2-14
Delimited TextInputFormat class, 3-11, 3-30, 3-34
Oracle Loader for Hadoop, 3-11
DelimitedTextOutputFormat class, 3-26
demo code for ORCH, 8-11
describe command
executing in HDFS using R, 9-15
dfs.id object
obtaining in R, 9-20
directories
accessible by Oracle Data Integrator, 4-3
creating in HDFS using R, 9-22
current HDFS, 9-30
for Oracle Loader for Hadoop output, 4-11
listing in HDFS, 9-21
ODI Application Adapter for Hadoop home, 1-15
Oracle SQL Connector for HDFS home, 1-7
R Advanced Analytics examples, 8-19
removing using R, 9-32
Sqoop home, 1-18
See also database directories; root directory
disable_directory_link_check access parameter, 2-8
downloading software, 1-3,1-4, 1-14, 1-17, 1-18,
1-19,1-23
drivers
JDBC, 1-18,3-18,4-4
Oracle Data Integrator agent, 4-5
ORACLE_DATAPUMP, 3-21
ORACLE_LOADER, 2-18
DROP_ERROR_TABLE option, 4-10
dry run execution in R, 9-54
durability property, 6-44

E

encoding characters, 6-39, 6-42
error Something is terribly wrong..., 1-18
example code for ORCH

descriptions, 8-19
exists functionin R, 9-17
exporting R objects to Hadoop, 9-55
EXT_TAB_DIR_LOCATION option, 4-11
external tables

about, 2-1
EXTERNAL VARIABLE DATA access
parameter, 2-8
EXTERNAL_TABLE option, 4-9
ExternalTable command
syntax, 2-6
EXTRA_OLH_CONF_PROPERTIES option, 4-11

F

file formats for Oracle Data Integrator, 4-8
file identifiers
validating in R, 9-40
file sampling in R, 9-19, 9-37
file size
obtaining using R, 9-36
file sources
defining for Oracle Data Integrator, 4-3
File to Hive KM, 4-2,4-8
FILE_IS_LOCAL option, 4-9
File-Hive to Oracle (OLH) KM, 4-2,4-10
files
downloading from HDFS, 9-16
obtaining HDFS metadata using R, 9-15
testing existence in HDFS from R, 9-17
uploading local to HDFS, 9-38
See also data files; HDFS files
filterl.R example, 8-19
filter2.R example, 8-19
filter3.R example, 8-20
flex fields, 4-4,4-8
FLOW_CONTROL option, 4-9
FLOW_TABLE_OPTIONS option, 4-11
frame methods for Hive, 8-4
functions
for reading from Oracle NoSQL Database, 6-41
for writing to Oracle NoSQL Database, 6-43
Oracle NoSQL Database, 6-31
reading and writing sequence files, 6-48
reading Avro files, 6-5
reading from Oracle NoSQL Database, 6-38
writing Avro files, 6-7

G

get function

Oracle NoSQL Database adapter, 6-41
group.apply.R example, 8-20
gzip input files, 2-25

H

Hadoop client

configuring, 1-5,1-22

installing, 1-5
hadoop fs command, 1-5
HADOOP_CLASSPATH

for Oracle Data Integrator, 4-6
HADOOP_HOME

for Oracle Data Integrator, 4-5
HADOOP_HOME environment variable, 1-18

HADOOP_LIBEXEC_DIR environment
variable, 1-18
hadoop.exec function, 8-10
config argument, 8-10
example, 8-18, 8-22, 8-25,9-6
syntax description, 9-5
hadoop.run function, 8-10
config argument, 8-10
example, 8-15, 8-19, 8-20, 8-22, 8-23, 8-24, 8-26,
8-27, 8-28, 8-29,9-9
syntax description, 9-8
HDEFS client
See Hadoop client
HDEFS commands
issuing from R, 9-3
HDFS data
copyinginR, 9-3
HDFS directories
acquiring root using R, 9-33
changing in R, 9-13
changing root using R, 9-35
creating a dfs.id object, 9-20
creating in R, 9-22
deleting using R, 9-31, 9-32
identifying currentin R, 9-30
listing in R, 9-21
HDFS file identifiers
obtaining in R, 9-20
validating in R, 9-40
HDFS file names
converting to dfs.id objectin R, 9-20
HDFS files
accessing from R, 9-11
copying data from Oracle Database, 9-27
copying data from the database using R, 9-29
copying data to Oracle Database, 9-25
copying data toR, 9-18
copying from database objects using R, 9-27
copying into Hive, 4-8
copying into Oracle Database using R, 9-25
copying using R, 9-14
deleting using R, 9-31
downloading to local system, 9-16
loading data into an Oracle database, 3-14
moving from R, 9-23
number of parts, 9-24
obtaining size from R, 9-36
restrictions in Oracle R Advanced Analytics for
Hadoop, 82
sampling from R, 9-34
testing existence in HDFS from R, 9-17
uploading local, 9-38

HDFS metadata

obtaining using R, 9-15
HDFS path

changing in R, 9-13
HDFS root directory

changing from R, 9-35
obtaining using R, 9-33
hdfs_datatrans R demo, 8-12

Index-3

hdfs_dir R demo, 8-13
hdfs_putget R demo, 8-13
hdfs_stream Bash shell script, 1-6
hdfs.attach function
example, 8-13,9-6,9-9, 9-40
syntax description, 9-11
hdfs.cd function
example, 8-12,8-13, 8-15, 8-16, 8-17
syntax description, 9-13
hdfs.cp function
example, 8-12
syntax description, 9-14
hdfs.cpomv R demo, 8-11
hdfs.describe function
example, 8-12,8-13
syntax example, 9-15
hdfs.download function
example, 8-12,8-15, 8-20, 8-24
syntax description, 9-16
hdfs.exists function
example, 8-12,8-13, 8-15, 8-20, 8-24
syntax description, 9-17
hdfs.get function
example, 8-12,8-13, 8-15, 8-16, 8-18, 8-19, 8-20,
8-22,8-23, 8-24, 8-25, 8-27, 8-28
syntax description, 9-18
hdfs.head function
syntax description, 9-19
hdfs.id function
example, 8-15, 8-20, 8-24
syntax description, 9-20
hdfs.Is function
example, 8-12,8-13
syntax description, 9-21
hdfs.mkdir function
example, 8-12,8-13, 8-16, 8-17, 8-20, 8-24
syntax description, 9-22
hdfs.mv function
example, 8-12
syntax description, 9-23
hdfs.parts function
syntax description, 9-24
hdfs.pull function
example, 8-12
syntax description, 9-25
hdfs.push function
syntax description, 9-27
hdfs.put function
example, 8-12,8-13, 8-15, 8-16, 8-18, 8-19, 8-20,
8-22,8-23, 8-24, 8-25, 8-27, 8-28, 8-29
syntax description, 9-29
hdfs.pwd function
example, 8-12,8-13, 8-15, 8-16, 8-17
syntax description, 9-30
hdfs.rm function
example, 8-12,8-13, 8-15, 8-16
syntax example, 9-31
hdfs.rmdir function
example, 8-12,8-13, 8-15, 8-16, 8-17, 8-20, 8-24
syntax description, 9-32

Index-4

hdfs.root function
example, 8-12,8-13, 8-15, 8-16, 8-17
syntax description, 9-33
hdfs.sample function
example, 8-13,8-16
syntax description, 9-34
hdfs.setroot function
example, 8-12,8-13, 8-15, 8-16, 8-17
syntax description, 9-35
hdfs.size function
example, 8-12
syntax description, 9-36
hdfs.tail function
syntax description, 9-37
hdfs.upload function
example, 8-12, 8-15, 8-20, 8-24
syntax description, 9-38
hints for optimizing queries, 2-31
Hive access from R, 8-3
Hive application adapters, 4-2,4-10
Hive Control Append KM, 4-2,4-9
Hive data source for Oracle Data Integrator, 4-3
Hive data types, support for, 8-5
Hive database for Oracle Loader for Hadoop, 1-12
Hive distribution, 1-12
Hive flex fields, 4-8
Hive Query Language (HiveQL), 4-2
Hive tables
loading data into (Oracle Data Integrator), 4-8
reverse engineering, 4-2,4-7

reverse engineering in Oracle Data Integrator, 4-7

XML format, 2-12
Hive Transform KM, 4-2,4-10
hive_aggregate R demo, 8-13
hive_analysis R demo, 8-13
hive_basic R demo, 8-14
hive_binning R demo, 8-14
hive_columnfns R demo, 8-14
HIVE_HOME, for Oracle Data Integrator, 4-5
hive_nulls R demo, 8-14
hive_pushpull R demo, 8-14
hive_sequencefile R demo, 8-14
HiveToAvrolnputFormat class, 3-12
hosts property, 6-45

IKM File to Hive, 4-2,4-8
IKM File-Hive to Oracle (OLH), 4-2,4-10
IKM Hive Control Append, 4-2,4-9, 4-10
IKM Hive Transform, 4-2,4-9,4-10
IndexedRecord, 3-15
InputFormat class

Oracle Loader for Hadoop, 3-11
INSERT_UPDATE mode, 4-3
installation

Apache Hadoop, 1-5

CDH, 1-5

Hadoop client, 1-5

Oracle Data Integrator Application Adapter for

Hadoop, 1-14
Oracle Loader for Hadoop, 1-12
Oracle R Advanced Analytics for Hadoop, 1-17
Oracle SQL Connector for HDFS, 1-4
Sqoop utility, 1-18
Instant Client libraries, 1-12
interface configurations
Oracle Data Integrator, 4-8
is.hdfs.id function
example, 8-18
syntax description, 9-40
is.ore.* functions, 8-3

J

JDBC drivers, 1-18, 3-18, 4-4
Jellyfish R demo, 8-16
job names

specifying in R, 8-10, 9-5, 9-6, 9-8

K

key-value pairs
generating from R objects, 9-56, 9-57
kmeans.R demo, 8-18
kmeans.R example, 8-22
knowledge modules
description, 4-2
See also CKM, IKM, and RKM entries
kv
collection-avroxml function, 6-32
collection-binxml function, 6-33, 6-34
collection-text function, 6-31, 6-32
collection-xml function, 6-32, 6-33
get-avroxml function, 6-34
get-binxml function, 6-35
get-text function, 6-34
get-xml function, 6-35
key-range function, 6-35
put-binxml function, 6-34
put-text function, 6-34
put-xml function, 6-34
kvstore property, 6-45

L

licenses, third-party, 3-40
linear model R demo, 8-15
LMF Jellyfish R demo, 8-16
LMF mahout ALS-WR demo, 8-16
Im.R example, 8-22
load balancing
in Oracle Loader for Hadoop, 3-23
loadCI, 3-23
loading data files into Hive, 4-8
loading options for Oracle Data Integrator, 4-8
local files
copying into Hive, 4-8
downloading from HDFS, 9-16
LOG_FILE_NAME option, 4-7
logical methods for Hive, 8-4

logreg.R example, 8-23

mahout ALS-WR demo, 8-16
map.df.R example, 8-23
map.list.R example, 8-23
mappers

configuration settings, 8-10

examples, 8-19

generating key-value pairs for in R, 9-56, 9-57

running from R, 9-5,9-8
mapred_basic R demo, 8-15
mapred_modelBuild R demo, 8-15
MAPRED_OUTPUT_BASE_DIR option, 4-11
mapred.config class

syntax description, 8-10

using, 9-5,9-8
MapReduce functions

writing inR, 9-3
MapReduce jobs

configuring in R, 8-10

exporting R objects to, 9-55

running from R, 9-5,9-8
MapReduce programs

data compressionin R, 9-59

data decompressionin R, 9-62
MasterPolicy durability, 6-44
matrix methods for Hive, 8-4
maxLoadFactor property, 3-23
mkdir command

running in R, 9-22
model.plot.R example, 8-24
model.prep.R example, 8-25
mv command

running from R, 9-23

N

neural network R demo, 8-16
nilled function, 6-14

NMF R demo, 8-17

null values in Avro, 6-14
numeric methods for Hive, 8-4

(o)

OCI Direct Path
See Oracle OCI Direct Path output formats
ODI_ADDITIONAL_CLASSPATH environment
variable, 4-5
ODI_HIVE_SESSION_JARS, for Oracle Data
Integrator, 4-5,4-6
ODI_OLH_JARS, for Oracle Data Integrator, 4-6
OLH_HOME environment variable, 1-13, 1-16, 4-6
OLH_OUTPUT_MODE option, 4-11
operating system user permissions, 1-6
Oracle, 3-27
Oracle Data Integrator agent
configuring, 4-5
drivers, 4-5

Index-5

Oracle Data Integrator Application Adapter
description, 4-1
Oracle Data Integrator Application Adapter for
Hadoop
creating models, 4-7
data sources, 4-3
flex fields, 4-8
installing, 1-14
loading options, 4-8
security, 4-2
setting up projects, 4-6
topology setup, 4-3
Oracle Data Integrator Companion CD, 1-15
Oracle Data Integrator Studio configuration, 4-6
Oracle Database
connecting from R, 9-3
copying data from HDFS, 9-25
copying data to HDFS, 9-27
querying connections from R, 9-51
reconnecting from R, 9-60
user privileges, 1-10
Oracle Database access from ORCH, 8-8
Oracle Database adapter, 6-19
configuration properties, 6-26
Oracle Database connections
disconnecting from R, 9-52
from R, 9-41,9-44,9-45
reconnecting from R, 9-60
See also Oracle Database
Oracle Direct Connector for HDFS
pattern-matching characters, 2-26
Oracle Instant Client libraries, 1-12
Oracle Loader for Hadoop
description, 3-1
input formats, 3-14
installing, 1-12
supported database versions, 1-12
using in Oracle Data Integrator, 4-2, 4-6,4-10
Oracle Loader for Hadoop configuration properties
used by Oracle XQuery for Hadoop, 6-26
Oracle NoSQL Database
writing to, 6-43
Oracle NoSQL Database Adapter
configuration properties, 6-44
Oracle NoSQL Database adapter, 6-29
collection function, 6-38
functions for reading, 6-38
reading Avro as XML, 6-10
writing XML as Avro, 6-14
Oracle NoSQL Database functions, 6-31
Oracle OCI Direct Path interface, 3-27
Oracle OCI Direct Path output formats, 3-27
Oracle permissions, 1-6
Oracle R Advanced Analytics for Hadoop
description, 8-1
installation, 1-17
obtaining the ORCH version number, 9-63
Oracle R Connector for Hadoop
access to HDFS files, 9-11
alphabetical list of functions, 9-1

Index-6

categorical list of functions, 9-2
connecting to Oracle Database, 9-3
copying HDFS data, 9-3
debugging functions, 9-3
HDEFS commands issued from, 9-3
MapReduce functions, 9-3
Oracle Software Delivery Cloud, 1-3
Oracle SQL Connector for HDFS
description, 2-1
installation, 1-4
query optimization, 2-31
Oracle Technology Network
certifications, 1-15
downloads, 1-3,1-18
Oracle XQuery for Hadoop, 5-1
ORACLE_DATAPUMP driver, 3-21
ORACLE_LOADER driver, 2-18
oracle.hadoop.xquery.kv.config.durability
property, 6-44
oracle.hadoop.xquery .kv.config.requestLimit
property, 6-44
oracle.hadoop.xquery .kv.config.requestTimeout
property, 6-45
oracle.hadoop.xquery .kv.config.socketOpenTimeout
property, 6-45
oracle.hadoop.xquery .kv.config.socketRead Timeout
property, 6-45
oracle.kv.batchSize property, 6-45
oracle.kv.consistency property, 6-46
oracle.kv.hosts configuration property, 6-44
oracle.kv.hosts property, 6-45
oracle.kv kvstore configuration property, 6-44
oracle.kv kvstore property, 6-45
oracle.kv.timeout property, 6-46
orahdfs-version /bin directory, 1-7
orahdfs-version.zip file, 1-6,1-9
OralLoader, 3-21,3-25,5-13
OraLoaderMetadata utility program, 3-8
oraloader-version directory, 1-13,1-16
oraloader-version.zip file, 1-6,1-13,1-16
ORCH package
installation, 1-17,1-19
version numbers, 9-63
See also Oracle R Advanced Analytics for Hadoop
orch_Ilm R demo, 8-15
orch_Imf_jellyfish R demo, 8-16
orch_Imf_mahout_als R demo, 8-16
orch_neural R demo, 8-16
orch.connect function
syntax description, 9-41
orch.connected function
example, 8-12
syntax description, 9-44
orch.dbcon function
syntax description, 9-45
orch.dbg lasterr function
syntax description, 9-47
orch.dbg.off function
syntax description, 9-48
orch.dbg.on function

syntax description, 9-49
orch.dbg.output function
syntax description, 9-50
orch.dbinfo function
syntax description, 9-51
orch.disconnect function
syntax description, 9-52
orch.dryrun function
syntax description, 9-54
orch.evaluate function, 8-9
example, 8-16
orch.export function
example, 8-15, 8-18, 8-20, 8-22, 8-23, 8-24, 8-25,
8-28, 8-29
syntax description, 9-55
orch.export.fit function, 8-9
example, 8-16
orch.keyval function
example, 8-15, 8-18, 8-19, 8-20, 8-27, 8-28
syntax description, 9-56
orch.keyvals function
example, 8-25, 8-26, 8-28, 8-29
syntax description, 9-57
orch.lm function, 8-9
example, 8-15
orch.Imf function, 8-9
example, 8-16
orch.neural function, 8-9
example, 8-16
orch.nmf demo, 8-17
orch.nmf function, 8-9
orch.nmf.NMFalgo function, 8-9
example, 8-17
orch.pack function
example, 8-15, 8-18, 8-20, 8-23, 8-24
syntax description, 9-59
orch.recommend function, 8-9
example, 8-16
orch.reconnect function
syntax description, 9-60
orch.temp.path function, 9-61
orch.tgz package, 1-19
orch.unpack function
example, 8-15, 8-18, 8-20, 8-23, 8-26
syntax description, 9-62
orch.version function
syntax description, 9-63
orch.which function
See orch.dbcon function
ORE functions for Hive, 8-3
ore functions for Hive, 8-3
ore.attach function
example, 8-13, 8-14
ore.connect function
example, 8-13,8-14
ore.create function, 8-7
example, 8-14
ore.drop function
example, 8-12,8-15
ore.exec function, 8-7

example, 8-14
ore.frame objects, 9-27, 9-29

See data frames
ore.is.connected function

example, 8-12
ore.pull function

example, 8-14
ore.push function

example, 8-14
ore.sync function

example, 8-14
ore.warn.order option, 8-7
OSCH_BIN_PATH directory, 1-11
OVERRIDE_INPUTFORMAT option, 4-11
OVERRIDE_ROW_FORMAT option, 4-9

P

parallel processing, 1-2,2-31, 8-10, 8-11, 8-20, 9-24
partitioning, 3-5
path, changing in R, 9-13
pattern-matching characters in Oracle Direct
Connector for HDFS, 2-26

POST_TRANSFORM_DISTRIBUTE option, 4-10
POST_TRANSFORM_SORT option, 4-10
PQ_DISTRIBUTE hint, 2-31
PRE_TRANSFORM_DISTRIBUTE option, 4-10
PRE_TRANSFORM_SORT option, 4-10
predict.orch.Im function, 8-9

example, 8-15
preprocessor access parameter, 2-8
print.orch.lm function, 8-9
print.summary.orch.Im function, 8-9
privileges, Oracle Database, 1-10
program execution, local dry runin R, 9-54
projects

setting up in Oracle Data Integrator, 4-6
put function

Oracle NoSQL Database adapter, 6-43
pwd command

running from R, 9-30

Q

query optimization for Oracle SQL Connector for
HDFS, 2-31

R

R connector
See Oracle R Connector for Hadoop
R Distribution, 1-19, 1-23
R distribution, 1-17,1-22
R functions
alphabetical listing, 9-1
categorical listing, 9-2
See also Oracle R Connector for Hadoop
R functions for Hive, 8-4
R packages
bitops, 9-59
R programs

Index-7

local execution, 9-54
random order messages, 8-7
reading Avro files, 6-5
RECYCLE_ERRORS option, 4-9
reducers

configuration settings, 8-11

examples, 8-19

generating key-value pairs forinR, 9-56, 9-57

running from R, 9-5, 9-8
ReplicaAck policy, 6-44
ReplicaPolicy durability, 6-44
requestLimit property, 6-44
requestTimeout property, 6-45
reverse engineering in Hive, 4-2,4-7
reverse-engineering Hive tables, 4-7
reverse.log file, 4-7
RKM Hive, 4-2,4-7
rlm.R example, 8-26
rm command

issuing from R, 9-31
rmdir command

issuing from R, 9-32
root directory

changing from R, 9-35

obtaining using R, 9-33

S

sampling data
from Oracle Loader for Hadoop, 3-23
sampling HDFS files, 9-19, 9-37
scripts
debugging inR, 9-3
snippets, 4-2
seq
collection function, 6-48
collection-binxml function, 6-49
collection-xml function, 6-48
put function, 6-50
put functions, 6-49
put-binxml function, 6-51, 6-52
put-xml function, 6-50, 6-51
sequence file adapter, 6-47
sequence file adapter functions, 6-48
SerDes JAR files, 4-5,4-6
snippets in Oracle Data Integrator, 4-2
socketOpenTimeout property, 6-45
socketReadTimeout property, 6-45
software downloads, 1-3,1-4,1-14, 1-17, 1-18, 1-19,
1-23
Something is terribly wrong with Hadoop
MapReduce message, 1-18
split sizes, 6-6
split.map.R example, 8-27
split.reduce.R example, 8-27
SQL*Loader, 3-19
Sqoop, 8-8
Sqoop utility
installing on a Hadoop client, 1-23
installing on a Hadoop cluster, 1-18

Index-8

STATIC_CONTROL option, 4-9

STOP_ON_FILE_NOT_FOUND option, 4-9

subrange specification, Oracle NoSQL Database
adapter, 6-40

summary.orch.Im function, 8-9

sum.R example, 8-28

T

tables
copying data from HDFS, 3-1
copying data from HDFS to Oracle
Database, 9-25
copying data from Oracle Database to
HDEFS, 9-27
TEMP_DIR option, 4-11
temporary HDFS path for R, 9-61
teragen2.xy.R example, 8-29
teragen.matrix.R example, 8-28
teragen.xy.R example, 8-29
terasort.R example, 8-29
testing functions in R, 8-3
text files
converting to Avro, 6-8
third-party licenses, 3-40
timeout property, 6-46
TRANSFORM_SCRIPT option, 4-10
TRANSFORM_SCRIPT_NAME option, 4-10
transforming data
in Oracle Data Integrator, 4-1,4-9
TRUNCATE option, 4-9,4-11
type mappings
between XQuery and Avro, 6-14
between XQuery and Oracle Database, 6-21

U

uncompressed files, 2-26
USE_HIVE_STAGING_TABLE option, 4-11
USE_LOG option, 4-7
USE_ORACLE_STAGING_TABLE option, 4-11
USE_STAGING_TABLE option, 4-9

userlib directory, 4-6

UTE-8 encoding, 6-39, 6-42

UTL_FILE package, 1-11

\'}

validating data
in Oracle Data Integrator, 4-1,4-2,4-9
vector methods for Hive, 8-4

w

wildcard characters
in resource names, 4-8
setting up data sources in ODI using, 4-3
support in IKM File To Hive (Load Data), 4-2
writing Avro files, 6-7

XML
writing as Avro arrays, 6-17
writing as Avro maps, 6-16
writing as Avro primitives, 6-18
writing as Avro records, 6-15
writing as Avro unions, 6-17
XML template for Data Pump files, 2-9
XML templates
Data Pump files, 2-9
delimited text files, 2-14
Hive tables, 2-12
xml-reference directory, 1-15,4-3
XQuery
See Oracle XQuery for Hadoop

Index-9

Index-10

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Text Conventions
	Syntax Conventions

	Changes in This Release for Oracle Big Data Connectors User's Guide
	Changes in Oracle Big Data Connectors Release 2 (2.3)
	Changes in Oracle Big Data Connectors Release 2 (2.2)
	Changes in Oracle Big Data Connectors Release 2 (2.0)

	Part I Setup
	1 Getting Started with Oracle Big Data Connectors
	About Oracle Big Data Connectors
	Big Data Concepts and Technologies
	What is MapReduce?
	What is Apache Hadoop?

	Downloading the Oracle Big Data Connectors Software
	Oracle SQL Connector for Hadoop Distributed File System Setup
	Software Requirements
	Installing and Configuring a Hadoop Client on the Oracle Database System
	Installing Oracle SQL Connector for HDFS
	Providing Support for Hive Tables
	Granting User Privileges in Oracle Database
	Setting Up User Accounts on the Oracle Database System
	Using Oracle SQL Connector for HDFS on a Secure Hadoop Cluster

	Oracle Loader for Hadoop Setup
	Software Requirements
	Installing Oracle Loader for Hadoop
	Providing Support for Offline Database Mode
	Using Oracle Loader for Hadoop on a Secure Hadoop Cluster

	Oracle Data Integrator Application Adapter for Hadoop Setup
	System Requirements and Certifications
	Technology-Specific Requirements
	Location of Oracle Data Integrator Application Adapter for Hadoop
	Setting Up the Topology

	Oracle XQuery for Hadoop Setup
	Software Requirements
	Installing Oracle XQuery for Hadoop
	Troubleshooting the File Paths

	Oracle R Advanced Analytics for Hadoop Setup
	Installing the Software on Hadoop
	Software Requirements for a Third-Party Hadoop Cluster
	Installing Sqoop on a Hadoop Cluster
	Installing Hive on a Hadoop Cluster
	Installing R on a Hadoop Cluster
	Installing the ORCH Package on a Hadoop Cluster

	Installing Additional R Packages
	Providing Remote Client Access to R Users
	Software Requirements for Remote Client Access
	Configuring the Server as a Hadoop Client
	Installing Sqoop on a Hadoop Client
	Installing R on a Hadoop Client
	Installing the ORCH Package on a Hadoop Client
	Installing the Oracle R Enterprise Client Packages (Optional)

	Part II Oracle Database Connectors
	2 Oracle SQL Connector for Hadoop Distributed File System
	About Oracle SQL Connector for HDFS
	Getting Started With Oracle SQL Connector for HDFS
	Configuring Your System for Oracle SQL Connector for HDFS
	Using the ExternalTable Command-Line Tool
	About ExternalTable
	ExternalTable Command-Line Tool Syntax

	Creating External Tables
	Creating External Tables with the ExternalTable Tool
	Creating External Tables from Data Pump Format Files
	Required Properties
	Optional Properties
	Defining Properties in XML Files for Data Pump Format Files
	Example

	Creating External Tables from Hive Tables
	Hive Table Requirements
	Data Type Mappings
	Required Properties
	Optional Properties
	Defining Properties in XML Files for Hive Tables
	Example

	Creating External Tables from Delimited Text Files
	Data Type Mappings
	Required Properties
	Optional Properties
	Defining Properties in XML Files for Delimited Text Files
	Example

	Creating External Tables in SQL

	Publishing the HDFS Data Paths
	Listing Location File Metadata and Contents
	Describing External Tables
	More About External Tables Generated by the ExternalTable Tool
	About Configurable Column Mappings
	Default Column Mappings
	All Column Overrides
	One Column Overrides
	Mapping Override Examples

	What Are Location Files?
	Enabling Parallel Processing
	Location File Management
	Location File Names

	Configuring Oracle SQL Connector for HDFS
	Creating a Configuration File
	Oracle SQL Connector for HDFS Configuration Property Reference

	Performance Tips for Querying Data in HDFS

	3 Oracle Loader for Hadoop
	What Is Oracle Loader for Hadoop?
	About the Modes of Operation
	Online Database Mode
	Offline Database Mode

	Getting Started With Oracle Loader for Hadoop
	Creating the Target Table
	Supported Data Types for Target Tables
	Supported Partitioning Strategies for Target Tables

	Creating a Job Configuration File
	About the Target Table Metadata
	Providing the Connection Details for Online Database Mode
	Generating the Target Table Metadata for Offline Database Mode
	OraLoaderMetadata Utility

	About Input Formats
	Delimited Text Input Format
	About DelimitedTextInputFormat
	Required Configuration Properties
	Optional Configuration Properties

	Complex Text Input Formats
	About RegexInputFormat
	Required Configuration Properties
	Optional Configuration Properties

	Hive Table Input Format
	About HiveToAvroInputFormat
	Required Configuration Properties

	Avro Input Format
	Configuration Properties

	Oracle NoSQL Database Input Format
	About KVAvroInputFormat
	Required Configuration Properties

	Custom Input Formats
	About Implementing a Custom Input Format
	About Error Handling
	Supporting Data Sampling
	InputFormat Source Code Example

	Mapping Input Fields to Target Table Columns
	Automatic Mapping
	Manual Mapping
	Converting a Loader Map File

	About Output Formats
	JDBC Output Format
	About JDBCOutputFormat
	Configuration Properties

	Oracle OCI Direct Path Output Format
	About OCIOutputFormat
	Configuration Properties

	Delimited Text Output Format
	About DelimitedTextOutputFormat
	Configuration Properties

	Oracle Data Pump Output Format
	About DataPumpOutputFormat

	Running a Loader Job
	Specifying Hive Input Format JAR Files
	Specifying Oracle NoSQL Database Input Format JAR Files
	Job Reporting

	Handling Rejected Records
	Logging Rejected Records in Bad Files
	Setting a Job Reject Limit

	Balancing Loads When Loading Data into Partitioned Tables
	Using the Sampling Feature
	Tuning Load Balancing
	Tuning Sampling Behavior
	When Does Oracle Loader for Hadoop Use the Sampler's Partitioning Scheme?
	Resolving Memory Issues
	What Happens When a Sampling Feature Property Has an Invalid Value?

	Optimizing Communications Between Oracle Engineered Systems
	Oracle Loader for Hadoop Configuration Property Reference
	Third-Party Licenses for Bundled Software
	Apache Licensed Code
	Apache Avro 1.7.3
	Apache Commons Mathematics Library 2.2
	Jackson JSON 1.8.8

	4 Oracle Data Integrator Application Adapter for Hadoop
	Introduction
	Concepts
	Knowledge Modules
	Security

	Setting Up the Topology
	Setting Up File Data Sources
	Setting Up Hive Data Sources
	Setting Up the Oracle Data Integrator Agent to Execute Hadoop Jobs
	Configuring Oracle Data Integrator Studio for Executing Hadoop Jobs on the Local Agent

	Setting Up an Integration Project
	Creating an Oracle Data Integrator Model from a Reverse-Engineered Hive Model
	Creating a Model
	Reverse Engineering Hive Tables

	Designing the Interface
	Loading Data from Files into Hive
	Validating and Transforming Data Within Hive
	IKM Hive Control Append
	CKM Hive
	IKM Hive Transform

	Loading Data into an Oracle Database from Hive and HDFS

	Part III Oracle XQuery for Hadoop
	5 Using Oracle XQuery for Hadoop
	What Is Oracle XQuery for Hadoop?
	Getting Started With Oracle XQuery for Hadoop
	Basic Steps
	Example: Hello World!

	About the Adapters
	About the Oracle XQuery for Hadoop Functions
	About the Avro File Adapter
	About the Oracle Database Adapter
	About the Oracle NoSQL Database Adapter
	About the Sequence File Adapter
	About the Text File Adapter
	About the XML File Adapter
	About Other Modules for Use With Oracle XQuery for Hadoop

	Creating an XQuery Transformation
	XQuery Transformation Requirements
	About XQuery Language Support
	Accessing Data in the Hadoop Distributed Cache
	Calling Custom Java Functions from XQuery
	Accessing User-Defined XQuery Library Modules and XML Schemas
	XQuery Transformation Examples

	Running a Query
	Oracle XQuery for Hadoop Options
	Generic Options
	About Running Queries Locally

	Oracle XQuery for Hadoop Configuration Properties
	Third-Party Licenses for Bundled Software
	Apache Licensed Code
	ANTLR 3.2
	Apache Ant 1.7.1
	Apache Avro 1.7.3, 1.7.4
	Apache Xerces
	Apache XMLBeans 2.5
	Jackson 1.8.8
	Woodstox XML Parser 4.2

	6 Oracle XQuery for Hadoop Reference
	Avro File Adapter
	Built-in Functions for Reading Avro Files
	avro:collection-avroxml
	avro:get

	Custom Functions for Reading Avro Container Files
	Custom Functions for Writing Avro Files
	About Converting Values Between Avro and XML
	Reading Avro as XML
	Reading Records
	Reading Maps
	Reading Arrays
	Reading Unions
	Reading Primitives

	Writing XML as Avro
	Writing Records
	Writing Maps
	Writing Arrays
	Writing Unions
	Writing Primitives

	Oracle Database Adapter
	Custom Functions for Writing to Oracle Database
	%oracle-property Annotations and Corresponding Oracle Loader for Hadoop Configuration Properties

	Oracle NoSQL Database Adapter
	Prerequisites for Using the Oracle NoSQL Database Adapter
	Built-in Functions for Reading from and Writing to Oracle NoSQL Database
	kv:collection-text
	kv:collection-text
	kv:collection-text
	kv:collection-avroxml
	kv:collection-avroxml
	kv:collection-avroxml
	kv:collection-xml
	kv:collection-xml
	kv:collection-xml
	kv:collection-binxml
	kv:collection-binxml
	kv:collection-binxml
	kv:collection-binxml
	kv:put-text
	kv:put-xml
	kv:put-binxml
	kv:get-text
	kv:get-avroxml
	kv:get-xml
	kv:get-binxml
	kv:key-range
	kv:key-range
	Oracle NoSQL Database Adapter Examples

	Custom Functions for Reading Values from Oracle NoSQL Database
	Custom Functions for Retrieving Single Values from Oracle NoSQL Database
	Custom Functions for Writing to Oracle NoSQL Database
	Oracle NoSQL Database Adapter Configuration Properties

	Sequence File Adapter
	Built-in Functions for Reading and Writing Sequence Files
	seq:collection
	seq:collection-xml
	seq:collection-binxml
	seq:put
	seq:put
	seq:put-xml
	seq:put-xml
	seq:put-binxml
	seq:put-binxml
	Examples of Sequence File Adapter Functions

	Custom Functions for Reading Sequence Files
	Custom Functions for Writing Sequence Files

	Text File Adapter
	Built-in Functions for Reading and Writing Text Files
	text:collection
	text:collection-xml
	text:put
	text:put-xml
	text:trace
	Examples of Text File Adapter Functions

	Custom Functions for Reading Text Files
	Custom Functions for Writing Text Files
	Examples of Text File Functions

	XML File Adapter
	Built-in Functions for Reading XML Files
	xmlf:collection
	xmlf:collection
	Examples of XML File Adapter Functions

	Custom Functions for Reading XML Files

	JSON Module
	Built-in Functions for Reading JSON
	json:parse-as-xml
	json:get
	Examples of JSON Functions

	Utility Module
	Duration, Date, and Time Functions
	String Functions

	Hadoop Module
	Serialization Annotations

	7 Oracle XML Extensions for Hive
	What are the XML Extensions for Apache Hive?
	Using the Hive Extensions
	Creating XML Tables
	Hive CREATE TABLE Syntax for XML Tables
	CREATE TABLE Examples
	Simple Examples
	Detailed Examples

	XML Function Library for Apache Hive
	Online Documentation of Functions
	About Hive Access to External Files
	About Data Type Conversions

	xml_query
	xml_query_as_primitive
	xml_exists
	xml_table

	Part IV Oracle R Advanced Analytics for Hadoop
	8 Using Oracle R Advanced Analytics for Hadoop
	About Oracle R Advanced Analytics for Hadoop
	Access to HDFS Files
	Access to Apache Hive
	ORE Functions for Hive
	Generic R Functions Supported in Hive
	Support for Hive Data Types
	Usage Notes for Hive Access
	Example: Loading Hive Tables into Oracle R Advanced Analytics for Hadoop

	Access to Oracle Database
	Usage Notes for Oracle Database Access
	Scenario for Using Oracle R Advanced Analytics for Hadoop with Oracle R Enterprise

	Analytic Functions in Oracle R Advanced Analytics for Hadoop
	ORCH mapred.config Class
	Examples and Demos of Oracle R Advanced Analytics for Hadoop
	Using the Demos
	Using the Examples

	Security Notes for Oracle R Advanced Analytics for Hadoop

	9 ORCH Library Reference
	Functions in Alphabetical Order
	Functions by Category
	Making Connections
	Copying Data
	Exploring Files
	Writing MapReduce Functions
	Debugging Scripts
	Using Hive Data
	Writing Analytical Functions

	hadoop.exec
	hadoop.run
	hdfs.attach
	hdfs.cd
	hdfs.cp
	hdfs.describe
	hdfs.download
	hdfs.exists
	hdfs.get
	hdfs.head
	hdfs.id
	hdfs.ls
	hdfs.mkdir
	hdfs.mv
	hdfs.parts
	hdfs.pull
	hdfs.push
	hdfs.put
	hdfs.pwd
	hdfs.rm
	hdfs.rmdir
	hdfs.root
	hdfs.sample
	hdfs.setroot
	hdfs.size
	hdfs.tail
	hdfs.upload
	is.hdfs.id
	orch.connect
	orch.connected
	orch.dbcon
	orch.dbg.lasterr
	orch.dbg.off
	orch.dbg.on
	orch.dbg.output
	orch.dbinfo
	orch.disconnect
	orch.dryrun
	orch.export
	orch.keyval
	orch.keyvals
	orch.pack
	orch.reconnect
	orch.temp.path
	orch.unpack
	orch.version

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

